
Looking ahead: What comes after
Airflow 2.0?

Aizhamal Nurmamat kyzy

Ash Berlin-Taylor

The Road so Far...

Airflow Timeline

2014

Started at

AirBnB

2015

Open Sourced

March 2016

Donated to Apache

Software Foundation

December 2018

Graduated as a top-level

project

December 2020

Airflow 2.0 released

July 2020

Inaugural Airflow

Summit

July 2021

Airflow Summit V2

Airflow Today

Collaborative

+1,500 code authors

Active

Top 5 Apache project

repositories by commits

in 2020

Supportive

Continued active

releases for v1 and v2

Popular

Hundreds of companies

using Airflow in the

wild

ASF
Incubator ASF

Top Level Project

Airflow 2.0Airflow
Summit’20

Airflow Today

Source: pypistats.org

Airflow User Community

Moscow

Bangalore

London

NYC

São Paulo

Beijing Seoul

Singapore

Sidney

Bay Area
Tel Aviv

Source: Google Analytics sessions

Community > Code

Community > Code

Airflow Summit 2020
~6000 registrations

X Sponsors

31 Committers

21 PMC members

~9000 registrations

XX sponsors

44 Committers

24 PMC members

Airflow Summit 2021

Transition

Apache Airflow 2.2 and
beyond

We build our computer
(systems) the way we build
our cities: over time, without
a plan, on top of ruins

— Ellen Ulman

Filip Hodas

Roadmap: A possible future

Making DAGs a joy to write

Airflow should be the go to
orchestrator for every data
workflow job

Airflow should be easier to
operate confidently

Roadmap Concepts

● Making DAGs a joy to write

● Airflow should be the go to

orchestrator for every data

workflow job

● Airflow should be easier to

operate confidently

Airflow 2.2

AIP-39: Run DAGs on
customizable schedules

Why AIP-39

AIP-40: Any operator can
"defer" itself

Why AIP-40

The near future

Where's the new
UI?

Adding missing API endpoints first

Don't want to ask people to not

contribute new UI features

Nor do we want to chase a moving

target

AIP-38

airflowctl: CLI over the API

Untrusted workers

DAG/task lifecycle hooks
and easier notifications

task = MyOperator(

 task_id = "something",

 on_failure_callback=send_slack_message(

 channels=['#data-ops'],

 mentions=['@ash'],

),

)

@task(on_failure_callback=[send_slack_message(), send_email]

def my_task():

 ...

Dynamic DAGs

@task
def get_files_from_s3():
 ...

my_files = get_files_from_s3()
s3_delete_files = S3DeleteObjectsOperator.partial(
 aws_conn_id="my-aws-conn-id",
 bucket="my-bucket"
).map(key=my_files)

Add screenshot for previous

@dag
def my_dag(markets: list[str], campaigns: dict[str, list[int]]):
 @task
 def ingest(market):
 ...
 @task
 def calculate_roi(market, campaign):
 ...
 @task
 def aggregate_rois(market, campaign_rois):
 total = 0
 n = 0
 for campaign_roi in campaign_rois:
 n +=1
 total += campaign_roi
 return campaign_roi/total

 data = ingest.map(markets)
 rois = calculate_roi.map(market, data)
 stats = aggregate_rois(market, rois)

A better cross-DAG story

Looking further ahead

Event triggered DAGs

DAG versioning

Easier DAG deployment

Streaming

New concept: a Data object

Better support for Machine
Learning

Airflow 3.0?

