
Daniel Imberman

Apache Airflow and Ray
Orchestrating ML at Scale

• Strategy Engineer at
astronomer.io, Airflow PMC
member, co-creator of
K8sExecutor

• Previously: Building data science
platforms at Bloomberg LP

• Obsessed with Data Science
Tooling, and building distributed
systems

Background

http://astronomer.io

The Airflow Data Science Story

The Airflow Data Science Story

• Airflow is the tool to take you from experiment to production model

• Monitoring and scheduling ensure your models update in time for SLAs

• Connection handling for easily switching between dev -> prod data
sources

• Fault tolerant scheduler that can retry jobs in case of failure

The Airflow Data Science Story

The (Traditional) Airflow Data Science Story

Experiment Parameterize Productionize

• Parameterize Notebooks through cell tagging

• Stores intermediate notebooks

• Execute using Python API or CLI

• Stores notebooks to S3/GCS

Papermill

Issues with this approach

• Entire notebook executes as a single task

• Low visibility, no fault tolerance

• Code is in multiple locations

• Experimentation becomes difficult

• Repeatability becomes messy

The Next Gen Airflow Data Science Story?

Experiment Parameterize Productionize

• Minimal conversion from Jupyter notebook -> Airflow DAG

• Moving large datasets between different tasks should be trivial.

• Should be able to request dedicated resources for the compute job

• GPU, RAM, CPU, etc.

• Register & deploy, and replicate the resulting models.

• Maintain orchestration and monitoring at scale.

The Ideal Story

“[A] distributed execution framework that makes it easy
to scale your applications and to leverage state of the
art machine learning libraries.

Enter Ray

5/19/2021 logo.svg

file:///Users/dimberman/Desktop/logo.svg 1/1

• Run the same code on your local machine, on an EC2 VM, a
hardware machine, etc. with no code change!

• Native Integrations with many ML projects

• Simple setup and native pythonic library

• Options for distributed computation (dask, spark, modin)

• Ray Serve for model serving

Enter Ray

5/19/2021 logo.svg

file:///Users/dimberman/Desktop/logo.svg 1/1

The Ideal Story

+

• Introduced Airflow 2.0

• Convert a python function to an
Airflow task using just a single
decorator!

• Pass data between tasks using
functional composition

• But what if we could add the
power of Ray?

The Taskflow API
@task
def get_initial_number():
 return 1

@task
def add_one(value):
 return value + 1

@dag(dag_kwargs=dag_kwargs)
def dag():
 value = get_initial_number()
 for i in range(5):
 value = add_one(value)

The Ideal Story

+

@task @ray.remote(num_cpu=2)

Introducing The Ray Decorator!

@ray_task
def get_initial_number():
 return 1

@ray_task(num_cpu=2)
def add_one(value):
 return value + 1

@dag(dag_kwargs=dag_kwargs)
def dag():
 value = get_initial_number()
 for i in range(5):
 value = add_one(value)

• Automatically run your airflow
tasks in your ray cluster with one
line of code!

• Ability to dynamically size tasks
and access large ray instances

• Intermediate values automatically
stored in the plasma store for
ease and data locality!

Introducing The Ray Decorator!

@ray_task
def get_initial_number():
 return 1

@ray_task(num_cpu=2)
def add_one(value):
 return value + 1

@dag(dag_kwargs=dag_kwargs)
def dag():
 value = get_initial_number()
 for i in range(5):
 value = add_one(value)

The top-tier ML tooling of Ray with
the Stability and Ecosystem of Airflow

From Notebook to Production

Develop

@ray.remote
def do_some_stuff():
 ...

do_some_stuff.remote()

@ray.remote
def do_some_stuff():
 ...

 return data

do_some_stuff.remote()

Experiment

@ray_task
def train_model():
 …

@dag(…)
def my_dag():
 train_model()

Parameterize
data_path = \
 “{{ conf.data_path }}”

@ray_task
def train_model(path: str):
 …

@dag(…)
def my_dag():
 train_model(data_path)

Productionize

Now it’s easy to:
• Add more tasks & parallelize
• Tune the model(s)
• Schedule fresh updates
• Monitor for failures
• (Re)Deploy the best model(s)
• Connect to the ecosystem

5/19/2021 logo.svg

file:///Users/dimberman/Desktop/logo.svg 1/1

Deploy your DAG!

The Next Gen Airflow Data Science Story

Develop
Experiment &
Parameterize Productionize

How It Works

How It Works

How It Works

Send ray.remote function

Start task 1

Store Object ID

Store result

Alert Airflow of function completion and send object ID

How It Works

Retrieve Object ID

Task 2

Send ray.remote function with object ID

Retrieve Object using ID

How It Works

Next Steps

Checkpointing
@ray_task(checkpoint=True)
def really_long_model():
 …

@ray_serve_task
def serve_model():
 …

@dag(dag_kwargs=dag_kwargs)
def dag():
 model = really_long_model()
 serve_model(model)

• Store intermediate data in external data stores

• Re-run failed tasks

• Plug Tune checkpoints to model registries and
experiment tracking libs

• Tweak Experiments so even if your ray cluster
crashes, you will be able to restart DAG from
checkpoint

Ray serve decorator
@ray_task
def create_model_1():
 …
@ray_task
def create_model_2():
 …

@ray_serve_task
def serve_model():
 ComposedModel.deploy()

@dag(dag_kwargs=dag_kwargs)
def dag():
 model = create_model()
 serve_model(model)

• Deploy models to your ray cluster
via airflow DAGs for instance
prediction endpoints

• Composed Models = Multiple
models based on business logic

• Parallelize multi-model training with
Airflow

Road Map

May 2021

• Alpha released

• Modin Support

• Custom sizes

July 2021

• Beta released

• Checkpointing

• Anyscale connector

Q3 2021

• GA released

• Fully tested and supported

Q4 2021

• GA Running with

 Anyscale cloud

How to Get the Ray Provider

How to Get the Ray Provider
Head to https://registry.astronomer.io/

How to Get the Ray Provider

pip install airflow-provider-ray

Thank You

@danimberman 
@ApacheAirflow

 
astronomer.io

@astronomerio

Special thanks to:

• Richard Liaw

• Will Drevo

• Charles Greer

• Pete DeJoy

• Rob Deeb

• Plinio Guzman

http://astronomer.io

