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• Strategy Engineer at 
astronomer.io, Airflow PMC 
member, co-creator of 
K8sExecutor


• Previously: Building data science 
platforms at Bloomberg LP


• Obsessed with Data Science 
Tooling, and building distributed 
systems 

Background

http://astronomer.io


The Airflow Data Science Story



The Airflow Data Science Story

• Airflow is the tool to take you from experiment to production model


• Monitoring and scheduling ensure your models update in time for SLAs


• Connection handling for easily switching between dev -> prod data 
sources


• Fault tolerant scheduler that can retry jobs in case of failure



The Airflow Data Science Story



The (Traditional) Airflow Data Science Story

Experiment Parameterize Productionize



• Parameterize Notebooks through cell tagging


• Stores intermediate notebooks


• Execute using Python API or CLI


• Stores notebooks to S3/GCS

Papermill



Issues with this approach

• Entire notebook executes as a single task


• Low visibility, no fault tolerance


• Code is in multiple locations


• Experimentation becomes difficult


• Repeatability becomes messy 



The Next Gen Airflow Data Science Story?

Experiment Parameterize Productionize



• Minimal conversion from Jupyter notebook -> Airflow DAG


• Moving large datasets between different tasks should be trivial.


• Should be able to request dedicated resources for the compute job


• GPU, RAM, CPU, etc.


• Register & deploy, and replicate the resulting models.


• Maintain orchestration and monitoring at scale.

The Ideal Story



“[A] distributed execution framework that makes it easy 
to scale your applications and to leverage state of the 
art machine learning libraries.

Enter Ray
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• Run the same code on your local machine, on an EC2 VM, a 
hardware machine, etc. with no code change!


• Native Integrations with many ML projects


• Simple setup and native pythonic library


• Options for distributed computation (dask, spark, modin)


• Ray Serve for model serving

Enter Ray
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The Ideal Story

+



• Introduced Airflow 2.0


• Convert a python function to an 
Airflow task using just a single 
decorator!


• Pass data between tasks using 
functional composition 


• But what if we could add the 
power of Ray?

The Taskflow API
@task
def get_initial_number():
    return 1

@task
def add_one(value):
    return value + 1

@dag(dag_kwargs=dag_kwargs)
def dag():
    value = get_initial_number()
    for i in range(5):
        value = add_one(value)



The Ideal Story

+

@task @ray.remote(num_cpu=2)



Introducing The Ray Decorator!

@ray_task
def get_initial_number():
    return 1

@ray_task(num_cpu=2)
def add_one(value):
    return value + 1

@dag(dag_kwargs=dag_kwargs)
def dag():
    value = get_initial_number()
    for i in range(5):
        value = add_one(value)



• Automatically run your airflow 
tasks in your ray cluster with one 
line of code!


• Ability to dynamically size tasks 
and access large ray instances


• Intermediate values automatically 
stored in the plasma store for 
ease and data locality!

Introducing The Ray Decorator!

@ray_task
def get_initial_number():
    return 1

@ray_task(num_cpu=2)
def add_one(value):
    return value + 1

@dag(dag_kwargs=dag_kwargs)
def dag():
    value = get_initial_number()
    for i in range(5):
        value = add_one(value)



The top-tier ML tooling of Ray with 
the Stability and Ecosystem of Airflow 



From Notebook to Production



Develop

@ray.remote
def do_some_stuff():
    ...

do_some_stuff.remote()

@ray.remote
def do_some_stuff():
    ...

 return data

do_some_stuff.remote()



Experiment

@ray_task
def train_model():
    …

@dag(…)
def my_dag():
    train_model()



Parameterize
data_path = \
 “{{ conf.data_path }}”

@ray_task
def train_model(path: str):
    …

@dag(…)
def my_dag():
    train_model(data_path)



Productionize

Now it’s easy to: 
• Add more tasks & parallelize  
• Tune the model(s) 
• Schedule fresh updates 
• Monitor for failures 
• (Re)Deploy the best model(s) 
• Connect to the ecosystem
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Deploy your DAG!



The Next Gen Airflow Data Science Story

Develop
Experiment & 
Parameterize Productionize



How It Works



How It Works



How It Works

Send ray.remote function

Start task 1

Store Object ID

Store result

Alert Airflow of function completion and send object ID




How It Works

Retrieve Object ID

Task 2

Send ray.remote function with object ID

Retrieve Object using ID



How It Works



Next Steps



Checkpointing
@ray_task(checkpoint=True)
def really_long_model():
    …

@ray_serve_task
def serve_model():
    …

@dag(dag_kwargs=dag_kwargs)
def dag():
    model = really_long_model()
    serve_model(model)

• Store intermediate data in external data stores


• Re-run failed tasks


• Plug Tune checkpoints to model registries and 
experiment tracking libs


• Tweak Experiments so even if your ray cluster 
crashes, you will be able to restart DAG from 
checkpoint



Ray serve decorator
@ray_task
def create_model_1():
    …
@ray_task
def create_model_2():
    …

@ray_serve_task
def serve_model():
    ComposedModel.deploy()

@dag(dag_kwargs=dag_kwargs)
def dag():
    model = create_model()
    serve_model(model)

• Deploy models to your ray cluster 
via airflow DAGs for instance 
prediction endpoints


• Composed Models = Multiple 
models based on business logic


• Parallelize multi-model training with 
Airflow



Road Map

May 2021


• Alpha released

• Modin Support

• Custom sizes


July 2021


• Beta released 

• Checkpointing

• Anyscale connector

Q3 2021


• GA released

• Fully tested and supported

Q4 2021


• GA Running with

 Anyscale cloud



How to Get the Ray Provider



How to Get the Ray Provider
Head to https://registry.astronomer.io/ 



How to Get the Ray Provider

pip install airflow-provider-ray 



Thank You

@danimberman 
@ApacheAirflow


 
astronomer.io


@astronomerio
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