Apache Airflow and Ray Orchestrating ML at Scale

Daniel Imberman

Background

- Strategy Engineer at <u>astronomer.io</u>, Airflow PMC member, co-creator of K8sExecutor
- Previously: Building data science platforms at Bloomberg LP
- Obsessed with Data Science Tooling, and building distributed systems

The Airflow Data Science Story

The Airflow Data Science Story

- Airflow is the tool to take you from experiment to production model
- Monitoring and scheduling ensure your models update in time for SLAs
- Connection handling for easily switching between dev -> prod data sources
- Fault tolerant scheduler that can retry jobs in case of failure

The Airflow Data Science Story

The (Traditional) Airflow Data Science Story

Experiment

Parameterize

Productionize

papermill

- Parameterize Notebooks through cell tagging
- Stores intermediate notebooks
- Execute using Python API or CLI
- Stores notebooks to S3/GCS

PapermillOperator

PapermillOperator(

task_id="create_model", input_nb="s3://path/to/my_model.ipynb", output_nb="s3://path/to/my_model_param.ipynb",

Issues with this approach

- Entire notebook executes as a single task
- Low visibility, no fault tolerance
- Code is in multiple locations
- Experimentation becomes difficult
- Repeatability becomes messy

PapermillOperator

create_model

PapermillOperator(

task_id="create_model", input_nb="s3://path/to/my_model.ipynb", output_nb="s3://path/to/my_model_param.ipynb",

The Next Gen Airflow Data Science Story?

Parameterize

Productionize

The Ideal Story

- Minimal conversion from Jupyter notebook -> Airflow DAG
- Moving large datasets between different tasks should be trivial.
- Should be able to request dedicated resources for the compute job
 - GPU, RAM, CPU, etc.
- Register & deploy, and replicate the resulting models.
- Maintain orchestration and monitoring at scale.

Enter Ray

"[A] distributed execution framework that makes it easy to scale your applications and to leverage state of the art machine learning libraries.

Enter Ray

- Run the same code on your local machine, on an EC2 VM, a hardware machine, etc. with no code change!
- Native Integrations with many ML projects
- Simple setup and native pythonic library
- Options for distributed computation (dask, spark, modin)
- Ray Serve for model serving

The Ideal Story

+

The Taskflow API

- Introduced Airflow 2.0
- Convert a python function to an Airflow task using just a single decorator!
- Pass data between tasks using functional composition
- But what if we could add the power of Ray?

@task def get_initial_number(): return 1

@task
def add_one(value):
 return value + 1

```
@dag(dag_kwargs=dag_kwargs)
def dag():
    value = get_initial_number()
    for i in range(5):
        value = add_one(value)
```

The Ideal Story

+

@task

@ray.remote(num_cpu=2)

Introducing The Ray Decorator!

```
@ray task
def get initial number():
    return 1
@ray task(num cpu=2)
def add one(value):
    return value + 1
@dag(dag kwargs=dag kwargs)
def dag():
    value = get initial number()
    for i in range(5):
        value = add one(value)
```

Anyscale

Introducing The Ray Decorator!

- Automatically run your airflow tasks in your ray cluster with one line of code!
- Ability to dynamically size tasks and access large ray instances
- Intermediate values automatically stored in the plasma store for ease and data locality!

```
@ray task
def get initial number():
    return 1
@ray task(num cpu=2)
def add one(value):
    return value + 1
@dag(dag kwargs=dag kwargs)
def dag():
    value = get initial number()
    for i in range(5):
        value = add one(value)
```

The top-tier ML tooling of Ray with the Stability and Ecosystem of Airflow

From Notebook to Production

Develop

```
In [ ]: @ray.remote
        def load_dataframe() -> "ray.ObjectRef":
            0.0.0
            build dataframe from breast cancer dataset
            .....
            import modin.pandas as mpd
            url = "https://archive.ics.uci.edu/ml/machine-learning-databases/" \
             "00280/HIGGS.csv.gz"
            colnames = ["label"] + ["feature-%02d" % i for i in range(1, 29)]
            data = mpd.read_csv(url, compression='gzip', names=colnames)
            print("loaded higgs")
            return data
In [ ]: @ray.remote
        def split train test(data):
            print("Splitting Data to Train and Test Sets")
            df_train = data[(data['feature-01'] < 0.4)]</pre>
            colnames = ["label"] + ["feature-%02d" % i for i in range(1, 29)]
            train_set = xgbr.RayDMatrix(df_train, label="label", columns=colnames)
            df_validation = data[(data['feature-01'] >= 0.4)& (data['feature-01'] < 0.8)]
            test_set = xgbr.RayDMatrix(df_validation, label="label")
            print("finished data matrix")
            return train_set, test_set
In [ ]: def train_model(
            config,
            checkpoint_dir=None,
            data_dir=None,
            data=()
        ):
            logfile = open("/tmp/ray/session_latest/custom.log", "w")
            def write(msg):
                logfile.write(f"{msg}\n")
                logfile.flush()
            dtrain, dvalidation = data
            evallist = [(dvalidation, 'eval')]
            # evals_result = {}
            config = {
                "tree_method": "hist",
                "eval metric": ["logloss", "error"],
            print("Start training")
            bst = xgbr.train(
                params=config,
                dtrain=dtrain,
                ray params=RAY PARAMS,
                num_boost_round=100,
                evals=evallist,
                callbacks=[TuneReportCheckpointCallback(filename=f"model.xgb")])
```


@ray.remote
def do_some_stuff():

do some stuff.remote()

• • •

@ray.remote
def do_some_stuff():
 ...
 return data
do_some_stuff.remote()

Experiment

```
@ray_task(**task_args)
     def train_model(
             data
     ):
         train_df, validation_df = data
         evallist = [(validation_df, 'eval')]
         evals_result = {}
         config = {
             "tree_method": "hist",
             "eval_metric": ["logloss", "error"],
11
         bst = xgb.train(
             params=config,
             dtrain=train_df,
             evals_result=evals_result,
             ray_params=xgb.RayParams(max_actor_restarts=1, num_actors=8, cpus_per_actor=2),
             num_boost_round=100,
             evals=evallist)
         return bst
```


@ray_task
def train_model():

 $\bullet \bullet \bullet$

@dag(...)
def my_dag():
 train_model()

Parameterize

```
@ray_task(**task_args)
     def train_model(
             data
     ):
         train_df, validation_df = data
         evallist = [(validation_df, 'eval')]
         evals_result = {}
         config = {
             "tree_method": "hist",
             "eval_metric": ["logloss", "error"],
11
         bst = xgb.train(
13
             params=config,
             dtrain=train_df,
             evals_result=evals_result,
15
             ray_params=xgb.RayParams(max_actor_restarts=1, num_actors=8, cpus_per_actor=2),
             num_boost_round=100,
             evals=evallist)
         return bst
```


data path = \setminus "{{ conf.data_path }}"

 $\bullet \bullet \bullet$

@ray_task def train_model(path: str):

@dag(...) def my_dag(): train_model(data_path)

Productionize

Deploy your DAG!

1	<pre>@dag(default_args=default_args, schedule_interval=None, start_date=d</pre>
2	<pre>def task_flow_xgboost_modin():</pre>
3	<pre>build_raw_df = load_dataframe()</pre>
4	data = create_data(build_raw_df)
5	<pre>trained_model = train_model(data)</pre>
6	
7	task_flow_xgboost_modin = task_flow_xgboost_modin()

Airflow DAGs Security - Browse - Admin - Docs - Astronomer -	05:46 UTC 🗸	AU -	
DAG: xgboost_pandas_breast_cancer_tune schedule: None			
👤 Tree View 📲 Graph View 🛛 Task Duration 🛱 Task Tries 📥 Landing Times 📃 Gantt 🛕 Details <> Code	►	C	
2021-05-05T05:45:32Z Runs 25 Run manual2021-05-05T05:45:31.243870+00:00 Layout Left > Right V Update	Find Task		
DummyOperator _PythonDecoratedOperator	ailed skipped scheduled] no_status	
	Auto-refres	h C	
kickoff_dag + load_dataframe + split_train_test + tune_model + load_best_model_checkpoint +	complete_dag]	

days_ago(2), tags=['finished-modin-exa

tune Ray Serve

Now it's easy to:

- Add more tasks & parallelize
- Tune the model(s)
- Schedule fresh updates
- Monitor for failures
- (Re)Deploy the best model(s)
- Connect to the ecosystem

The Next Gen Airflow Data Science Story

Retrieve Object using ID

DAG

Next Steps

Checkpointing

- Store intermediate data in external data stores
- Re-run failed tasks
- Plug Tune checkpoints to model registries and experiment tracking libs
- Tweak Experiments so even if your ray cluster crashes, you will be able to restart DAG from checkpoint

```
@ray_task(checkpoint=True)
def really_long_model():
...
```

@ray_serve_task
def serve_model():

 $\bullet \bullet \bullet$

```
@dag(dag_kwargs=dag_kwargs)
def dag():
    model = really_long_model()
    serve model(model)
```


Ray serve decorator

- Deploy models to your ray cluster via airflow DAGs for instance prediction endpoints
- Composed Models = Multiple models based on business logic
- Parallelize multi-model training with Airflow

```
@ray_task
def create_model_1():
    ...
@ray_task
def create_model_2():
    ...
```

```
@ray_serve_task
def serve_model():
    ComposedModel.deploy()
```

```
@dag(dag_kwargs=dag_kwargs)
def dag():
    model = create_model()
    serve_model(model)
```

Road Map

Q4 2021

GA Running with Anyscale cloud

How to Get the Ray Provider

How to Get the Ray Provider

Head to https://registry.astronomer.io/

Providers

Python packages containing all relevant Airflow modules for a third-party service.

How to Get the Ray Provider

pip install airflow-provider-ray

Thank You

@danimberman @ApacheAirflow

astronomer.io @astronomerio

Special thanks to:

- Richard Liaw
- Will Drevo
- Charles Greer
- Rob Deeb
- Plinio Guzman

• Pete DeJoy

