
Deep dive into Airflow's Scheduler
Ash Berlin-Taylor,

PMC member @ Apache Airflow

Director of Airflow Engineering @ astronomer.io

Scheduler: The
load-bearing infinite loop
of Apache Airflow

Thank you for coming to my talk

Responsibilities of the scheduler

Manage retries

Ensure task is actually still running

Deal with DST transitions

Be highly-available

SLAs

Trigger success/failure callbacks

Cope with changing DAG structure

Enforce concurrency limits

Emit metrics

Support trigger rules (one success,

any failed etc.) including custom

ones

Respect differing start_dates for tasks

Check dependencies between tasks

Start tasks on schedule

Scheduler components
SchedulerJob

Executor

DagFileProcessor

← State Machine for tasks and dag runs

← Handles actual task execution

← Parses DAGs into serialized_dags table

"The" Scheduler
📦airflow.jobs.scheduler_job

None Scheduled Running

Success

Failed

Up for Retry

Queued

Never load DAG code in to
a long-running process

Scheduling decisions are only made upon
serialized DAG representation

_do_scheduling()

processor_agent.heartbeat()

heartbeat()

timed_events.run()

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

For each DAG* needing a DagRun to be created
(next_dagrun_create_after < NOW()):

- Create the dag run from the serialized
representation

- Update next DagRun info columns on DAG table
(next_dagrun, next_dagrun_create_after)

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

For each DAG in 'queued' state:
- Check number of already running DagRuns against

dag.max_active_runs
- If below limit set state to 'running'

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

Get next n "oldest" DagRuns in 'running' state'

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

Check DagRun timeouts
Check if DAG structure (tasks) has changed
Compute which TaskInstances can now be 'scheduled' (via the
currently-misnamed DagRun.update_state method)
Pass pending callbacks to DagFileProcessorManager

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

Check concurrency limits, and send as many tasks as possible to
the executor

Checks that must pass:

- Enough open pool slots available for task (can be >1 slot per task)

- Per DAG max_active_tasks limit

- Per (DAG, Task) task_concurrency limit

- Executor slots available (parallelism)

Everything else (task state, upstream etc) is checked before TaskInstance is

put in to "scheduled" state

Before enqueueing a TaskInstance

Executor

Send TaskInstance to
runner to actually execute

(Interface/responsibilities between Scheduler and Executor needs clarification)

Tasks report their own status directly back to DB

Executor responsible for watching when tasks don't do this

State kept in memory

Executor interface

DAG parsing

📦airflow.dag_processin
g

Sole place where user DAG code is

loaded

Previously split across

airflow.job.scheduler_job and

airflow.utils.dag_processing

Subprocess of main airflow scheduler command

Infinite loop.

Maintains a pool of subprocess that:

- Parse a DAG file in to serialized_dag table

- Execute any pending DAG level callbacks

Periodically checks for new DAG files being added

DagFileProcessorManager

DagFileProcessorManager._run_parsing_loop

Parsing process

"parse" dag file write DAGs to DB
tables

start_new_processes

_collect_results_from_processor

Periodically: send heartbeat

Periodically: _refresh_dag_dir

DagFileProcessorManager._run_parsing_loop

Parsing process

"parse" dag file write DAGs to DB
tables

start_new_processes

_collect_results_from_processor

Periodically: send heartbeat

Periodically: _refresh_dag_dir

Callback
request
from
Scheduler

High Availability

Use the existing metadata
DB for synchronisation

TaskInstance 1

TaskInstance 2

TaskInstance 3

TaskInstance 4

Scheduler 1 Scheduler 2

SELECT * FROM task_instance
LIMIT 2

SELECT * FROM task_instance
LIMIT 2

TaskInstance 1

TaskInstance 2

TaskInstance 3

TaskInstance 4

Scheduler 1 Scheduler 2

SELECT * FROM task_instance
LIMIT 2

SELECT * FROM task_instance
LIMIT 2

TaskInstance 1

TaskInstance 2

TaskInstance 3

TaskInstance 4

Scheduler 1 Scheduler 2

SELECT * FROM task_instance
LIMIT 2 FOR UPDATE

SELECT * FROM task_instance
LIMIT 2 FOR UPDATE

⏳

TaskInstance 1

TaskInstance 2

TaskInstance 3

TaskInstance 4

Scheduler 1 Scheduler 2

SELECT * FROM task_instance
LIMIT 2 FOR UPDATE SKIP LOCKED

SELECT * FROM task_instance
LIMIT 2 FOR UPDATE SKIP LOCKED

SchedulerJob._do_scheduling()

 self._create_dagruns_for_dags()

 self._start_queued_dagruns()

 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)

 num_queued_tis = self._critical_section_execute_task_instances()

SchedulerJob._do_scheduling()
with prohibit_commit(session) as guard:
 self._create_dagruns_for_dags(guard)

 self._start_queued_dagruns(session)
 guard.commit()
 dag_runs = self._get_next_dagruns_to_examine(State.RUNNING, session)
 for dag_run in dag_runs:
 self._schedule_dag_run(dag_run)
 guard.commit()
 num_queued_tis = self._critical_section_execute_task_instances()

_critical_section_execute_task_instances

SELECT * FROM pool FOR UPDATE NOWAIT;

If we can't lock any rows, abort rather than wait

SELECT * FROM pool FOR UPDATE NOWAIT;

Periodically detect dead schedulers

"Adopt" tasks from dead executors

Means a scheduler/executor can go

away (or partition) at any point

Active-active model.

Adopting tasks

Detecting dead schedulers

"Adopting" tasks from dead schedulers

Detecting zombie tasks

Managing SLAs

Other responsibilities

Optimization: check downstream states after task completion
After a Task executes, we have all

the info to check it's downstream

tasks.

Only goes as far as 'scheduled'

If "a" just finished, we can possibly

schedule tasks b and c

Happens in the worker!

a

d

b

c

e

Questions?

