Writing Dry Code in Airflow

Sarah Krasnik
Airflow Summit
July 14th, 2021
Scalability: Everyone Wants It

Whether it’s scaling a team from 5 to 20 or scaling infrastructure workloads, organizational demands grow and other parts of the company must grow in parallel.

By definition, scalability is the ability to grow in size.

However, the less naive definition is tied to growing in size efficiently.
Scalability: Everyone Wants It

Scale can be: exponential, linear or logarithmic, in order of efficiency.

Scalability is the ability to scale most efficiently by having growth in complexity amount to small growth in time to implementation.
What Does Scaling Airflow Mean?

Growing usage of Airflow largely means increasing resources, infrastructure, and a growing number of DAGs (oftentimes, all in parallel).

Focusing on the code: A growing number of DAGs can be a recipe for disaster, or motivation for good organization. Without leveraging base functions or classes, growing a code base from 5 DAGs to 100 could be a nightmare. It doesn’t have to be!
DAG Architecture: What Not To Do

Could a new team member view this file and know what to expect in the Airflow UI?

I don’t think so.
DAG Architecture: What Not To Do

1. File naming: this shouldn’t be random
2. Mix business logic with DAG code
3. Write tool-specific DAG and task code over, over, and over again
DAG Architecture: What Not To Do

The difficulties this poses:

1. Someone reviewing this code must understand all of the business logic and Airflow components.
2. Understanding DAGs in the Airflow Webserver UI is not straightforward.
3. Adding to the code is messy.
DRY: Don’t Repeat Yourself

It’s like the game of broken telephone: you repeat what you heard, but then something gets lost in translation and everyone is confused.

Trying to understand a code base that isn’t objectively intuitive is incredibly time consuming for someone who didn’t write it.

Except with code, it’s not funny when a misunderstanding happens while debugging an issue.

DRY: Don’t Repeat Yourself

Even a simple function of calculating the unix time of 7, 14, and 21 days ago is prone to error.

Do you think you’d be able to find the TWO bugs when debugging why your output isn’t what you’d expect?

```python
# Retrieve the epoch of the date 7, 14, 21 days prior to now.
def _get_previous_7_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(7)
    return int(prev_datetime.timestamp())

def _get_previous_14_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(14)
    return int(prev_datetime.timestamp())

def _get_previous_21_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(21)
    return int(prev_datetime.timestamp())
```
DRY: Don’t Repeat Yourself

Even a simple function of calculating the unix time of 7, 14, and 21 days ago is prone to error. Do you think you’d be able to find the TWO bugs when debugging why your output isn’t what you’d expect?

```python
# Retrieve the epoch of the date 7, 14, 21 days prior to now.
def _get_previous_7_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(7)
    return int(prev_datetime.timestamp())

def _get_previous_14_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(15)
    return int(prev_datetime.timestamp())

def _get_previous_21_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(21)
    return int(prev_datetime.timestamp())
```
DRY: Don’t Repeat Yourself

Not repeating yourself applies to DAG code too!

Now what does that look like when writing DAGs....

```python
# Retrieve the epoch of the date 7, 14, 21 days prior to now.
def _get_previous_7_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(7)
    return int(prev_datetime.timestamp())

def _get_previous_14_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(15)
    return int(prev_datetime.timestamp())

def _get_previous_21_days_epoch():
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(21)
    return int(prev_datetime.timestamp())
```

```python
# Retrieve the epoch of the date X days prior to now.
def _get_previous_epoch_days(days):
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(days=days)
    return int(prev_datetime.timestamp())
```
Dry Airflow DAG Architecture

The proposed DAG architecture:

- **Folder structure.** The code implementing a DAG should be within one folder, named the same as the DAG itself. Within the folder, the DAG declaration file should not contain any business logic.

- **Code consolidation.** If any code is shared, create a separate shared utility folder that’s referenced across DAGs.

- **Tool specific code.** Any code specific to Airflow or any other tool (Spark, Great Expectations, etc) should be localized to one place, with as little redundancy as possible. With Airflow, the factory pattern works well to achieve generalization.
Dry Airflow DAG Architecture: Folder Structure

When an Airflow DAG fails, it should be extremely obvious where in the codebase debugging begins.

Additionally, it should be equally obvious where the DAG is declared versus where business logic is implemented.
Dry Airflow DAG Architecture: Code Consolidation

If there are several DAGs handling timestamps and would use the epoch functions mentioned earlier, it can be put into a separate file in a “utility” folder.

DAG code can then use classes from the single folder, instead of copying logic.

Remember: we’re trying to avoid a game of broken telephone.

```python
# Retrieve the epoch of the date X days prior to now.
def _get_previous_epoch_days(days):
    current_datetime = datetime.combine(datetime.today(), time.min)
    prev_datetime = current_datetime - timedelta(days=days)
    return int(prev_datetime.timestamp())
```
Dry Airflow DAG Architecture: Tool Specific Code

Abstraction lets anyone contribute to the codebase easily, even if they only understand basic Airflow concepts.

- Supplying recommended defaults
- Generic task argument names

```python
def create_dag(name, schedule, args=None):
    default_args = {
        "owner": "airflow",
        "catchup": False,
        "depends_on_past": False,
        "start_date": datetime(year=2021, month=7, day=11),
        "concurrency": 1,
        "retries": 1,
        "retry_delay": timedelta(minutes=2),
        "max_active_runs": 1,
    }
    args = args if args else default_args
    return DAG(dag_id=name, default_args=default_args, schedule_interval=schedule)
```
Dry Airflow DAG Architecture: Tool Specific Code

Then, your DAG declaration files are unbelievably short, abstracted away from specific operators.
Dry Airflow DAG Architecture: Tool Specific Code

Alternative solutions to abstraction:

- Wrapper functions (example shown)
- DagFactory class
- The dag-factory pip package
 https://github.com/ajbosco/dag-factory
This doesn’t only apply to Airflow code.

Consider modifications to SQL queries, resulting in changes to data tests.

You may want one person to review the query itself, another to review the data tests, and a third person to review the Python elements of a DAG.

All three people don’t necessarily have to keep a deep knowledge of all tools (not that they shouldn’t!).
So where does this leave us?

- **Folder structure.** Making the jump from the Airflow UI to the codebase doesn’t involve a scavenger hunt.
- **Code consolidation.** Centralizing a repository of commonly used functions and classes means no game of developer broken telephone.
- **Tool specific code.** Abstracting over Airflow specific code diversifies who can contribute to and review code.
Final Thoughts

Depending on your use case, you might need more or less complex solutions.

Abstraction and organization are helpful even at a small scale.

Thank you!

Code can be found here:
https://github.com/sarahmk125/airflow-docker-metrics