
Writing Dry Code in Airflow
Sarah Krasnik

Airflow Summit

July 14th, 2021

Scalability: Everyone Wants It

Whether it’s scaling a team from 5 to 20 or scaling

infrastructure workloads, organizational demands grow

and other parts of the company must grow in parallel.

By definition, scalability is the ability to grow in size.

However, the less naive definition is tied to growing in

size efficiently.

Scalability: Everyone Wants It
Scale can be: exponential, linear or logarithmic, in order of efficiency.

Scalability is the ability to scale most efficiently by having growth in

complexity amount to small growth in time to implementation.

What Does Scaling Airflow Mean?
Growing usage of Airflow largely means increasing resources, infrastructure, and a growing

number of DAGs (oftentimes, all in parallel).

Focusing on the code: A growing number of DAGs can be a recipe for disaster, or motivation for

good organization. Without leveraging base functions or classes, growing a code base from 5

DAGs to 100 could be a nightmare. It doesn’t have to be!

DAG Architecture:
What Not To Do
Could a new team member view this file

and know what to expect in the Airflow

UI?

I don’t think so.

DAG Architecture:
What Not To Do

1. File naming: this shouldn’t be

random

2. Mix business logic with DAG code

3. Write tool-specific DAG and task

code over, over, and over again

DAG Architecture:
What Not To Do
The difficulties this poses:

1. Someone reviewing this code must

understand all of the business logic

and Airflow components.

2. Understanding DAGs in the

Airflow Webserver UI is not

straightforward.

3. Adding to the code is messy.

DRY: Don’t Repeat Yourself

It’s like the game of broken telephone: you repeat

what you heard, but then something gets lost in

translation and everyone is confused.

Trying to understand a code base that isn’t objectively

intuitive is incredibly time consuming for someone

who didn’t write it.

Except with code, it’s not funny when a

misunderstanding happens while debugging an issue.
Source: https://www.insivia.com/wp-content/uploads/2014/04/telephone_game.png

DRY: Don’t Repeat Yourself
Even a simple function of calculating the unix time of 7, 14, and 21 days ago is prone to error.

Do you think you’d be able to find the TWO bugs when debugging why your output isn’t what

you’d expect?

DRY: Don’t Repeat Yourself
Even a simple function of calculating the unix time of 7, 14, and 21 days ago is prone to error.

Do you think you’d be able to find the TWO bugs when debugging why your output isn’t what

you’d expect?

DRY: Don’t Repeat Yourself
Not repeating yourself applies to DAG code too!

Now what does that look like when writing DAGs....

Dry Airflow DAG Architecture
The proposed DAG architecture:

● Folder structure. The code implementing a DAG should be within one folder, named the

same as the DAG itself. Within the folder, the DAG declaration file should not contain any

business logic.

● Code consolidation. If any code is shared, create a separate shared utility folder that’s

referenced across DAGs.

● Tool specific code. Any code specific to Airflow or any other tool (Spark, Great Expectations,

etc) should be localized to one place, with as little redundancy as possible. With Airflow, the

factory pattern works well to achieve generalization.

Dry Airflow DAG Architecture: Folder Structure

When an Airflow DAG fails, it should be

extremely obvious where in the codebase

debugging begins.

Additionally, it should be equally obvious

where the DAG is declared versus where

business logic is implemented.

Dry Airflow DAG Architecture: Code Consolidation
If there are several DAGs handling timestamps and would use the

epoch functions mentioned earlier, it can be put into a separate file

in a “utility” folder.

DAG code can then use classes from the single folder, instead of

copying logic.

Remember: we’re trying to avoid a game of broken telephone.

Dry Airflow DAG Architecture:
Tool Specific Code
Abstraction let’s anyone contribute to the codebase

easily, even if they only understand basic Airflow

concepts.

● Supplying recommended defaults

● Generic task argument names

Dry Airflow DAG Architecture:
Tool Specific Code

Then, your DAG declaration files are

unbelievably short, abstracted away

from specific operators.

Dry Airflow DAG Architecture:
Tool Specific Code

Alternative solutions to abstraction:

● Wrapper functions (example shown)

● DagFactory class

● The dag-factory pip package

https://github.com/ajbosco/dag-factory

Dry Airflow DAG Architecture: Tool Specific Code

This doesn’t only apply to Airflow code.

Consider modifications to SQL queries, resulting

in changes to data tests.

You may want one person to review the query

itself, another to review the data tests, and a third

person to review the Python elements of a DAG.

All three people don’t necessarily have to keep a

deep knowledge of all tools (not that they

shouldn’t!).

Dry Airflow DAG Architecture: Putting It All Together
So where does this leave us?

● Folder structure. Making the jump from the Airflow UI

to the codebase doesn’t involve a scavenger hunt.

● Code consolidation. Centralizing a repository of

commonly used functions and classes means no game

of developer broken telephone.

● Tool specific code. Abstracting over Airflow specific

code diversifies who can contribute to and review code.

Final Thoughts
Depending on your use case, you might need more or less complex solutions.

Abstraction and organization are helpful even at a small scale.

Thank you!

Code can be found here:

https://github.com/sarahmk125/airflow-docker-metrics

https://github.com/sarahmk125/airflow-docker-metrics

