Building the Data Science Platform with Airflow @Near
Agenda

- Airflow - Development to Production - Architecture
- Airflow DAGs for different use cases
- Case study - Airflow for Engage and Insights
- Q&A
Near - Corporate Overview

Overview

- **2012**: Established Year
- **USD $134Mn to date**: $100Mn funding in July 2019

Global Presence

- Strong presence in USA, EUR, SEA, ANZ, JPN

Scale/Data

- **1.6 Billion**: Users
- **Across 44 Countries**: 70 Million+
- **Places**

Marquee Investors

- Telstra
- Cisco
- Sequoia Capital
- Greater Pacific
- JPMorgan
- Global Brain

Acquisitions

- **2021**: UM (formerly UberMedia) – provider of data intelligence and analytics solutions based in Pasadena, CA
- **2020**: Teemo - Location intelligence company based in Paris
Nearverse – The Data Universe – Unified and Anonymized

A platform designed to merge online and offline consumer data to give brands the most holistic & actionable view of their consumers.

1. Online data
 - 100% Anonymized
 - Apps
 - In-app usage
 - Content
 - Content consumption pattern
 - Devices
 - Device make and model

2. Offline data
 - 100% Anonymized
 - Mobility
 - People's location data from aggregators, partners, apps, public hotspots
 - Lifestyle
 - Places of Interest, Visitation patterns
 - Work or Home
 - Cross device usage

Online + offline data - Unified consumer view - Actionable insights - Unprecedented business value
What Near Does…

1. **Sync And Aggregate**
 - **Places**
 - e.g.: Stores, Zip Codes, Cities
 - **People**
 - e.g.: customers, Segments, Audiences

2. **Derive Intelligence**
 - Visitation / Footfall Trends
 - Pathing – Before and After
 - Trade Area / Home Locations
 - Dwell Time / Distance Travelled
 - Demographics
 - Brand Affinity / Purchase Behavior
 - Work Location / Employment Details
 - Search / Social behavior

3. **Act and Measure**
 - • Site Selection
 - • Competitor Intelligence
 - • Trade Area Dynamics
 - • Supply Chain Optimization
 - • 360 Degree Customer Journey
 - • Customer Engagement
 - • Competitor Conquesting
 - • Attribution ROI
Airflow - Deployment Architecture
Data Science Models @ Near

Foundational
- Cross Identity solves for linking user attributes to an individual using Graph Algorithms

Data Accuracy
- Stay points identify pings when user is stationary
- PlaceMatrix improves Accurate Place Boundaries or Polygonal area of a Place-of-Interest
- High Density Points are removed by a data-driven approach

User Behavior
- Visit History model user visit to Places of Interest - POIs accurately
- Audience Estimates is a real-time survey about people at places
- Properties about people and places helps in creating segments for marketing purposes
Deployment of Airflow

Airflow Configuration
1. Celery Executor
2. MySQL Database
3. Incoming WebHook
4. Python Env
5. Redis
6. Pools / connections

Jobs Deployed
1. Pyspark
2. Java Jars
3. Bash Scripts
4. Python

EMR Cluster

Benefits with Airflow
1. Ease of Deployment - Python Scripting
2. Scalability - Multiple jobs and execution (celery executor)
3. Operators - (BashOperator, PythonOperator, SparkSubmitOperator)
4. Webhooks - Slack, Github
5. Task Dependency Management
6. Connection with different systems - S3, Presto, Hive, Redis, Platform APIs
7. Proactive Monitoring / Alerting
8. Rerunning Failed Jobs (Idempotent)

Replica in Dev, Staging and Production
Environments we operate in

Local Execution
- EDA

Dev Environment
- Feature Engineering
- Model Training
- Performance Evaluation
- Airflow DAG

Staging Environment
- Github deployment with Jenkins
- Code Testing
- Packaging to egg / Docker

Prod Environment
- CICD Pipeline
- Monitoring and Alerting
- Production API Integration

Branches
- develop branch + feature branches
- release v1.0 branch
- prod_deploy branch
Data Science Models with Airflow

Batch Mode
- Demographics
- Brand Affinity / Propensity
- Home Location

On Demand Mode
- Aggregate Insights

Dynamic Mode
- Campaign Insights
Case Study - Audience Estimation, Engage DSP and Allspark Insights
Batch WorkFlow - Estimations

- Accurate estimation of people count at a given location.
- Input data from s3 and output to redis.
- Daily updation of data for accurate predictions.
- Ensure no downtime.
- Automated start, stop and flipping of instances.

1. Daily Accumulation of People IDs → Aggregation over a time period
2. Turn on Redis Instance → Push to DB → Flip to newly loaded DB
 - X Days
3. Turn on Redis Instance → Push to DB → Flip to newly loaded DB
 - Y Days
4. Turn on Redis Instance → Push to DB → Flip to newly loaded DB
 - Z Days

...
Code Snippets

def subDag1(parent_dag_id, sub_dag_id, default_args, spark_conn_id):
 dag_1 = DAG(parent_dag_id="", sub_dag_id, default_args=default_args,
 schedule_interval=None, max_active_runs=3)

 f1 = BashOperator(task_id='start_dummy_instance',
 bash_command='aws ec2 start-instances --dummy',
 dag=dag_1)

 f2 = BashOperator(task_id="delay_bash_task", dag=dag_1,
 bash_command="sleep 5m")

 f3 = SSHOperator(
 ssh_hook=ssh_hook,
 task_id='ssh_dummy_operator',
 command = "command to clear and restart redis",
 do_xcom_push=True,
 dag=dag_1)

 f2.set_upstream(f1)
 f3.set_upstream(f2)

dag = DAG('get_dummy', default_args=default_args,
 schedule_interval=None, max_active_runs=5)

spark_conn_id = 'spark_default'

t1 = BashOperator(task_id='get_dummy_instance',
 bash_command='curl -X GET "dummy_instance_id"',
 dag=dag)

 def redis_instance(**kargs):
 ti = kargs['ti']
 if ti.xcom_pull('get_dummy_instance') == "x":
 return("x")
 elif ti.xcom_pull('get_dummy_instance') == "y":
 return("y")

 pull_task = PythonOperator(
 task_id='flip_dummy_instance',
 python_callable=redis_instance,
 provide_context=True,
 dag=dag)

 trigger = TriggerDagRunOperator(
 Trigger_dag_id="dummy_dag.{{{ti.xcom_pull('get_dummy_instance')}}}",
 task_id='call_dummy_dag',
 # Ensure this equals the dag_id of the DAG to trigger
 dag=dag)

 pull_task.set_upstream(t1)
 trigger.set_upstream(pull_task)
for days in ['1']:
 host = "a1"
 port = 'p1'
 instance_id = "id1"

t16 = SparkSubmitOperator(
 task_id = 'taskid1_' + param1 + '_' + param2 + '_' + param3,
 conn_id = spark_conn_id,
 name = 'job1_' + param1 + '_' + param2 + '_' + param3,
 num_executors = 12,
 executor_cores = 2,
 executor_memory = '20G',
 dag=dag_2,
 depends_on_past=True,
 env_vars = {'python_env'},
 jars= 'jar1.jar',
 java_class = 'org.abc.jar1',
 applications='connector1.jar',
 application_args={host, port,
BASE_PATH + 'filepath/{}...'.format(param1,param2,param3),
exec_date_year, exec_date_month, exec_date_day]}

t17 = BashOperator(task_id='flip_instance',
bash_command='curl -v -X PUT --data instancename',
deps=on_past=True,
dag=dag_2)

t18 = BashOperator(task_id='stop_instance',
bash_command='aws ec2 stop-instances instancename',
dag=dag_2)

t2.set_upstream(t1)
t3.set_upstream(t2)
1. Event-driven approach to triggering the airflow DAGs - Experimental API - pass parameters
2. Retriggers for failed jobs
3. Controlled dependency management (modular code)
4. Slack Alerts
1. Run on daily campaigns to generate insights
2. Campaign run time - 15-90 days
3. Dynamic Parameter passing - campaign IDs
```python
def x_function(**kwargs):
    s3 = s3fs.S3FileSystem(anon=False)
    run_date = datetime.strptime(kwargs['ds'], '%Y-%m-%d')
    bucket = s3.ls('demo.csv')
    for fileN in bucket:
        if "part" in fileN:
            df = pd.read_csv(s3.open('{}\{}.format(fileN),mode='rb'))
            df = df.replace(np.nan, 0)
            LineItemIDlist = df['ID1'].tolist()
            LineItemIDlist = [int(x) for x in LineItemIDlist if (x != 0)]
            split_size=len(LineItemIDlist)/no_of_splits
            cell=splilt_size
            line_item_ID_list_of_list=[LineItemIDlist[i:i + no_of_splits] for i in range(0, len(LineItemIDlist), no_of_splits)]
            CampaignIDlist = df['ID2'].tolist()
            CampaignIDlist = [int(x) for x in CampaignIDlist if (x != 0)]
            split_size=len(CampaignIDlist)/no_of_splits
            cell=splilt_size
            campaign_item_ID_list_of_list=[CampaignIDlist[i:i + no_of_splits] for i in range(0, len(CampaignIDlist), no_of_splits)]

    print (run_date.strftime('%Y-%m-%d'))
    Variable.set("EXE_DATE_PROD",run_date.strftime('%Y-%m-%d'))
    Variable.set("ID1_1",run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[0])
    Variable.set("ID1_1",run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[0])
    Variable.set("ID1_2",run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[1])
    Variable.set("ID1_2",run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[1])
    Variable.set("ID1_3",run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[2])
    Variable.set("ID1_3",run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[2])
    Variable.set("ID1_4",run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[3])
    Variable.set("ID1_4",run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[3])
    Variable.set("ID1_5",run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[4])
    Variable.set("ID1_5",run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[4])
```

```
Conclusion and Future Work

Summary

1. Integration with newer data science models - reinforcement learning, deep learning, graphical networks
2. Upgrade to 2.0 - to improve security and use LDAP
3. Use of more hooks and operators
4. Dockerization
5. Use of Celery + Kubernetes Executor - CeleryKubernetes Executor