

Airflow - Development to Production - Architecture

Airflow DAGs for different use cases

Case study - Airflow for Engage and Insights

A&O

Q

Near - Corporate Overview

Overview

2012 Established Year USD \$134Mn to date \$100Mn funding in July 2019 Global Presence

Strong presence in USA, EUR, SEA, ANZ, JPN

Scale/Data

1.6 Billion Users

Across 44 Countries 70 Million+

Marquee Investors

J.P.Morgan

Acquisitions

2021 UM (formerly UberMedia) – provider of data intelligence and analytics solutions based in Pasadena, CA

2020 Teemo - Location intelligence company based in Paris

Nearverse – The Data Universe – Unified and Anonymized

A platform designed to merge online and offline consumer data to give brands the most holistic & actionable view of their consumers

Apps In-app usage

Content

Content consumption pattern

Devices

Device make and model

Mobility

People's location data from aggregators, partners, apps, public hotspots

Lifestyle

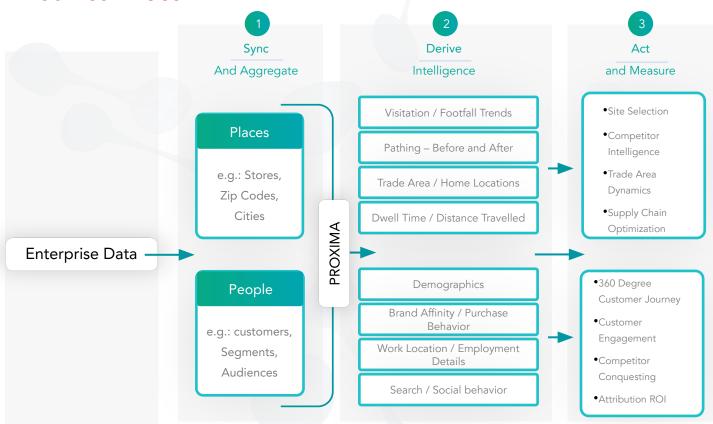
Places of Interest, Visitation patterns

Work or Home

Cross device usage

Online + offline data - Unified consumer view - Actionable insights - Unprecedented business value

What Near Does...



Data Science Models @ Near

Foundational

Cross Identity

solves for linking

individual using

Graph Algorithms

user attributes to an

Stay points identify pings when user is stationary

Visit History model user visit to Places of Interest - POIs accurately

Data Accuracy

PlaceMatrix
improves Accurate
Place Boundaries or
Polygonal area of a
Place-of-Interest

High Density Points are removed by a data-driven approach

User Behavior

Audience Estimates is a real-time survey about people at places Properties about people and places helps in creating segments for marketing purposes

Deployment of Airflow

Edge Node

Airflow Configuration

- 1. Celery Executor
- 2. MySQL Database
- 3. Incoming WebHook
- 4. Python Env
- 5. Redis
- 6. Pools / connections

EMR Cluster

Jobs Deployed

- 1. Pyspark
- 2. Java Jars
- 3. Bash Scripts
- 4. Python

Benefits with Airflow

- 1. Ease of Deployment Python Scripting
- 2. Scalability Multiple jobs and execution (celery executor)
- 3. Operators (BashOperator, PythonOperator, SparkSubmitOperator)
- 4. Webhooks Slack, Github
- 5. Task Dependency Management
- 6. Connection with different systems S3, Presto, Hive, Redis, Platform APIs
- 7. Proactive Monitoring / Alerting
- 8. Rerunning Failed Jobs (Idempotent)

Environments we operate in

Local Execution EDA **Dev Environment** Feature Engineering Model Training Performance Evaluation Airflow DAG

Staging Environment

Github deployment with Jenkins

Code Testing

Packaging to egg / Docker

Prod Environment

CICD Pipeline

Monitoring and Alerting

Production API Integration

prod_deploy branch

Data Science Models with Airflow

Batch Mode

Demographics

Brand Affinity / Propensity

Home Location

On Demand Mode

Aggregate Insights

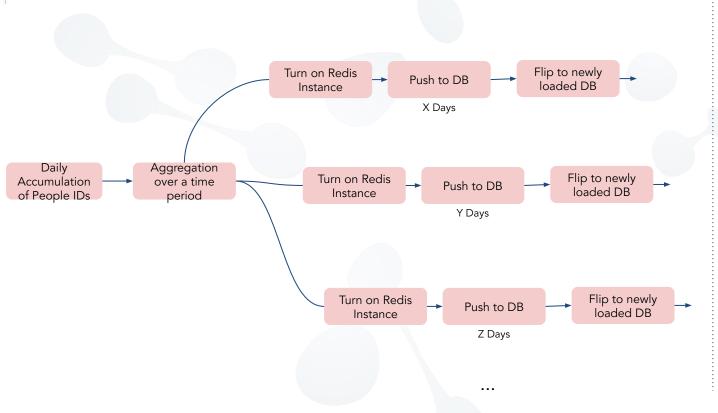
Dynamic Mode

Campaign Insights

Case Study - Audience Estimation, Engage DSP and Allspark Insights

Q

Batch WorkFlow - Estimations



- Accurate estimation of people count at a given location.
- Input data from s3 and output to redis
- Daily updation of data for accurate predictions
- Ensure no downtime
- Automated start, stop and flipping of instances

Q

Code Snippets

```
dag = DAG('get_dummy', default_args=default_args,
         schedule interval=None, max active runs=5)
spark conn id = 'spark default'
t1 = BashOperator(task_id='get_dummy_instance',
                    xcom push=True.
                    bash command='curl -X GET "dummy instance id"',
(t1)
def redis instance(**kwarqs):
    ti = kwarqs['ti']
    if ti.xcom_pull('get_dummy_instance')=="x":
        return("y")
    elif ti.xcom pull('get dummy instance')=="y":
   return("x")
pull task = PvthonOperator(
    task_id='flip_ dummy_instance',
    python_callable=redis_instance,
   provide context=True,
    dag=dag)
trigger = TriggerDagRunOperator(
    trigger_dag_id="dummy_dag {{ti.xcom_pull('flip_dummy_instance')}}",
    task_id='call_dummy_dag', # Ensure this equals the dag_id of the DAG to trigger
    dag=dag
pull task.set upstream(t1)
trigger.set upstream(pull task)
```

```
def subDag1(parent_dag_id,sub_dag_id,default_args,spark_conn_id):
   dag_1 = DAG(parent_dag_id+"."+sub_dag_id, default_args=default_args,
       schedule interval=None, max active runs=3)
   f1 = BashOperator(task_id='start_dummy_instance',
       bash command='aws ec2 start-instances --dummy',
       dag=dag 1)
   f2 = BashOperator(task_id="delay_bash_task",dag=dag_1,bash_command="
       sleep 5m")
   f3 = SSHOperator(
       ssh_hook=ssh_hook,
       task id='ssh dummy operator',
       command = "command to clear and restart redis",
       do xcom push=True,
       dag=dag 1)
   f2.set upstream(f1)
   f3.set_upstream(f2)
```

0

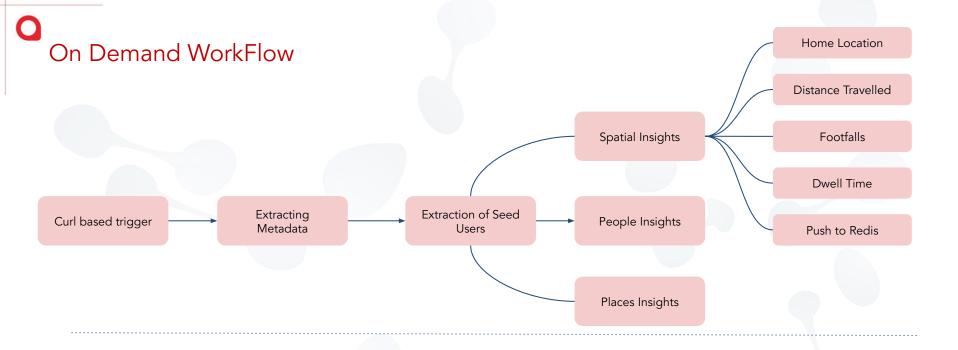
Code Snippets

```
for days in ['1']:
   host = "a1"
   port = 'p1'
   instance id = "id1"
   t16 = SparkSubmitOperator(
       task_id = 'taskid1_' + param1 + '_' + param2 + '_' + param3,
       conn id = spark conn id,
       name = 'job1' + param1 +' ' + param2 + ' ' + param3,
       num executors = 12,
       executor_cores = 2,
       executor memory = '20G',
       dag=dag_2,
       depends_on_past=True,
       env_vars = {'python_env'},
       jars= 'jar1.jar',
        java_class = 'org.abc.jar1',
       application='connector1.jar',
       application_args=[host,
       port,
        BASE_PATH + 'filepath/{}/..'.format(param1, param2, param3,
            exec date year, exec date month, exec date day)]
```

```
t17 = BashOperator(task_id='flip_instance',
    bash_command='curl -v -X PUT --data instancename',
    depends_on_past=True,
    dag=dag_2
)

t18 = BashOperator(task_id='stop_instance',
    bash_command='aws ec2 stop-instances instancename',
    dag=dag_2
)

t2.set_upstream(t1)
t3.set_upstream(t2)
```



- 1. Event-driven approach to triggering the the airflow DAGs Experimental API pass parameters
- 2. Retriggers for failed jobs
- 3. Controlled dependency management (modular code)
- 4. Slack Alerts



- 1. Run on daily campaigns to generate insights
- 2. Campaign run time 15-90 days
- 3. Dynamic Parameter passing campaign IDs

• Code Snippets

```
def x function(**kwarqs):
   s3 = s3fs.S3FileSystem(anon=False)
    run date = datetime.strptime(kwargs["ds"], '%Y-%m-%d')
   bucket = s3.ls('demo.csv')
   for fileN in bucket:
        if "part" in fileN:
            df = pd.read csv(s3.open('{}'.format(fileN).mode='rb'))
            df = df.replace(np.nan. 0)
            LineItemIDlist = df['ID1'].tolist()
            LineItemIDlist = [int(x) \text{ for } x \text{ in LineItemIDlist if } (x != 0)]
            split size=len(LineItemIDlist)/5
            no of splits=math.ceil(split size)
            line item ID list of list= [LineItemIDlist[i:i + no of splits] for i in range(0, len(LineItemIDlist), no of splits)]
            CampaignIDlist = df['ID2'].tolist()
            CampaignIDlist = [int(x) \text{ for } x \text{ in CampaignIDlist if } (x != 0)]
            split size=len(CampaignIDlist)/5
            no of splits=math.ceil(split size)
            campaign item ID list of list= [CampaignIDlist[i:i + no of splits] for i in range(0, len(CampaignIDlist), no of splits)]
            print (run date.strftime('%Y-%m-%d'))
            Variable.set("execution date prod", run date.strftime('%Y-%m-%d'))
            Variable.set("ID1 1 "+run date.strftime('%Y-%m-%d'), line item ID list of list[0])
            Variable.set("ID2_1_"+run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[0])
            Variable.set("ID1 2 "+run date.strftime('%Y-%m-%d'), line item ID list of list[1])
            Variable.set("ID2 2 "+run date.strftime('%Y-%m-%d'), campaign item ID list of list[1])
            Variable.set("ID1_3_"+run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[2])
            Variable.set("ID2 3 "+run date.strftime('%Y-%m-%d'), campaign item ID list of list[2])
            Variable.set("ID1_4_"+run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[3])
            Variable.set("ID2_4_"+run_date.strftime('%Y-%m-%d'), campaign_item_ID_list_of_list[3])
            Variable.set("ID1 5 "+run_date.strftime('%Y-%m-%d'), line_item_ID_list_of_list[4])
            Variable.set("ID2 5 "+run date.strftime('%Y-%m-%d'), campaign item ID list of list[4])
t4= PythonOperator(
   task id='x task'.
   python_callable=x_function,
   provide context=True,
   dag=dag)
```

Conclusion and Future Work

Summary

- 1. Integration with newer data science models reinforcement learning, deep learning, graphical networks
- 2. Upgrade to 2.0 to improve security and use LDAP
- 3. Use of more hooks and operators
- 4. Dockerization
- 5. Use of Celery + Kubernetes Executor CeleryKubernetes Executor