
1

Modernize a decade old pipeline
with Airflow 2.0

Dima Suvorov, Kuntal Basu, Stas Bytsko and QP Hou

2

Talk Overview

● Migration overview - Stas
● Custom Trigger rules
● Migration to Airflow 2.0 - QP
● Running Backfill at scale - Kuntal
● Self-Service Backfill UI plugin - Dima
● Fixing bugs in Backfill code
● Databricks clusters cost optimization

3

Migration overview

● Compute + Storage => ☁
○ AWS & Databricks

● Improve security and compliance
● Custom scheduler -> Airflow
● Mono-DAG

○ 1.4K tasks
○ Nestedness: up to 22 layers deep

https://tech.scribd.com/blog/2020/modernizing-an-old-data-pipeline.html

https://tech.scribd.com/blog/2020/modernizing-an-old-data-pipeline.html

4

Custom Trigger Rules

5

Migrated DAG gradually. DAG served 2 purposes:
● Run Production tasks
● Validate not-yet migrated tasks

Components:
1. DataSync - All tasks need input data from legacy env
2. Production Operators - generates business value
3. Migration Operators - unreliable, under test

○ Output written to separate database and validated against synced data
produced by task in legacy env

Dependencies on Migration Operators - not real, only to simplify
migration for teams

Example

6

Naïve approach

Pretend our migration tasks are the same as production tasks

7

Naïve approach problem

Migration tasks can fail, bringing down production tasks

8

Custom TriggerRuleDep

9

Custom TriggerRuleDep

Always treat Migration tasks as successful

10

Naïve approach solution - DAG

11

Perf. Problem

Unoptimized task can hold up all of the production downstream tasks

Unoptimized task can hold up all of the production downstreams

12

Perf. Optimization

1. Get all upstream tasks

2. Take finished + M
igration

3. Consider Migration

tasks as SUCCESS

inline and
rewrite

13

Perf. Optimization - DAG

14

Last problem: UPSTREAM_FAILED not propagated

If DataSync fails, all tasks have to take this into account and stop -
State.UPSTREAM_FAILED has to be propagated

15

Task lifecycle refresher

https://airflow.apache.org/docs/apache-airflow/stable/concepts/tasks.html#task-instances

https://airflow.apache.org/docs/apache-airflow/stable/concepts/tasks.html#task-instances

16

Propagate UPSTREAM_FAILED

2. Propagate UPSTREAM_FAILED

Status

1. Exclude Migration tasks that

didn’t meet deps criteria

17

Propagate UPSTREAM_FAILED - DAG

18

Airflow 2.0 Upgrade

19

Spoiler alert: It s̓ a one way trip

20

Airflow upgrade check is your friend

21

Airflow 2.0 upgrade - MySQL (Aurora RDS)

● MySQL 5.6 not supported by Airflow 2.0
○ Missing JSON column types

● MySQL 5.7 kind of works
● MySQL 8 not supported by Aurora RDS

○ Required for scheduler HA

22

Airflow 2.0 upgrade - Trigger rules

23

Airflow 2.0 upgrade - Performance improvement

● Faster Web UI
● Faster scheduler
● Scheduler sharding

24

Scheduler CPU usage after 2.0 upgrade

25

Running Backfill at Scale

26

Running Backfill at scale

Our goal
1. Backfill data for 14 years
2. Our intended DAG concurrency (i.e. how many version of single DAG we can run

concurrently) was 150, we settled later to 100

Limitless Limits
People say “Sky is the limit”, but to reach the sky there is a small matter of gravity that we
have to overcome. Exactly that happened to us. Let us talk about our gravitational
boundaries.

27

Airflow limits

AIRFLOW _CORE_ PARALLELISM
The amount of parallelism as a setting to the executor. This defines the max number of
task instances that should run simultaneously. Default value is 32. We override that in
our backfill execution commands to 100.

AIRFLOW__CORE__MAX_ACTIVE_RUNS_PER_DAG
The maximum number of active DAG runs per DAG. It maps to max_active_runs
attribute in the DAG definition. Default value is 16. We override it to 100.

AIRFLOW__CORE__DAG_CONCURRENCY
The number of task instances allowed to run concurrently by the scheduler in one DAG.
It maps to concurrency attribute in the DAG definition. We override it to 100.

28

Databricks and AWS limits

Apart from Airflow limits, we got restricted by Databricks and AWS account limits while
working on the backfill. Here are some examples:

1. AWS account limit of 1000 TB of total GP2 EBS volume size. We increased it to 1500
TB while at the same time reduced our EBS volume size per machine by almost 60%.

2. Databricks API limit. We were getting “429 Too Many Requests” errors from
Databricks.

3. Databricks Node creation limit at 200 nodes per minute. We worked with Databricks
to get these limits lifted for our account.

29

How much is too much

30

Self-Service Backfill UI plugin

31

Self-Service Backfill UI plugin

Why?
● Switch from Legacy in-house system to Airflow
● Increased load on Airflow Admins
● Give back the ability to run self-serviced backfills to our engineers
● Web UI based backfill trigger is still being discussed by the community

32

Self-Service Backfill UI plugin

Considered approaches:
● Feed all tasks to the scheduler
● New type of Job in the Web Server
● Use built-in Backfill functionality

33

Self-Service Backfill UI plugin

ECS

Airflow
Web server

How?
● AWS Elastic Container Service

34

Self-Service Backfill UI plugin

container

ECSruns in

ECR

Airflow
Docker
Image

Airflow
Web server

How?
● AWS Elastic Container Service
● AWS Elastic Container Registry

35

Self-Service Backfill UI plugin

container

ECS

Backfill requestsECR

Airflow
Docker
Image

Airflow
Web server

How?
● AWS Elastic Container Service
● AWS Elastic Container Registry
● ECS container to ECS calls

36

Self-Service Backfill UI plugin

container

ECS

Backfill

Backfill requestsECR

Airflow
Docker
Image

Airflow
Web server

How?
● AWS Elastic Container Service
● AWS Elastic Container Registry
● ECS container to ECS calls
● New ECS container for each Backfill

37

Self-Service Backfill UI plugin

container

ECS

ECR

Airflow
Docker
Image

Backfill

Backfill requests

RDS

Aurora (MySQL)

Airflow
Web server

How?
● AWS Elastic Container Service
● AWS Elastic Container Registry
● ECS container to ECS calls
● New ECS container for each Backfill
● Aurora Relational Database Service (MySQL)

38

Self-Service Backfill UI plugin

container

ECS

ECR

Airflow
Docker
Image

Backfill_1

Backfill requests

RDS

Aurora (MySQL)

Backfill_2

Backfill_...

Backfill_n

Airflow
Web server

How?
● AWS Elastic Container Service
● AWS Elastic Container Registry
● ECS container to ECS calls
● New ECS container for each Backfill
● Aurora Relational Database Service (MySQL)

39

40

41

42

43

44

45

Bug Busters

46

Backfill vs Scheduler

47

Backfill vs Scheduler

3 types of jobs in Airflow:
● SchedulerJob
● BackfillJob
● LocalTaskJob

48

Example:
1. SchedulerJob creates a DagRun and starts Task instances
2. SchedulerJob starts “task1”

3. BackfillJob started for a single task - “task1”
4. BackfillJob overwrites scheduler’s DagRun
5. SchedulerJob forgets about “task2” and it never gets triggered

Backfill vs Scheduler

49

Backfill vs Scheduler

Upstream fix PR under review: https://github.com/apache/airflow/pull/16089

https://github.com/apache/airflow/pull/16089

50

Typos in task regex

51

Typo in task regex

From the Backfill CLI command help output:
-t TASK_REGEX, --task-regex TASK_REGEX The regex to filter specific task_ids to backfill (optional)

If you made a typo and typed --task-regex task3

You will get:

52

Databricks clusters cost
optimization

53

Databricks clusters cost optimization

Why?
● AWS has limited number of instances for each AZ

“We currently do not have sufficient capacity in the Availability Zone you requested”

54

Databricks clusters cost optimization

EC2 spot prices across availability zones:

55

Databricks clusters cost optimization

How?
● Custom Airflow Databricks operator
● AWS “Describe Spot Price History” API
● Take the cheapest AZ in AWS region
● Fallback to the next cheapest AZ

56

Databricks clusters cost optimization

Gain:
● 10-20% cost saving
● Reduce chances of running into AWS instance limit

Learn More:
https://tech.scribd.com/blog/2020/optimize-databricks-cluster-configuration.html

https://tech.scribd.com/blog/2020/optimize-databricks-cluster-configuration.html

57

Q&A

tech.scribd.com
(weʼre hiring)

https://tech.scribd.com

