
Building Airflow

Jelle Munk
Amsterdam Area

Software developer

Tech Lead Core Data Infrastructure

Adyen?

Traditional value chain

Gateway Risk management Processing 
& Acquiring

Creditcard
schemes IssuersMerchant

Merchant Gateway Risk management Creditcard
schemes Issuers

Adyen Value Chain
One modern platform

Acquiring
Processing
&

Accept payments everywhere

Adyen Acquiring

Partner Acquiring

United States
Canada
Puerto Rico
Brazil
Australia
New Zealand

Europe
Japan
Hong Kong
Malaysia
Singapore

xw

The challenge

Data Warehouse
Our applications scale horizontally,
our data store did not..

picture www.telegraph.co.uk

http://www.telegraph.co.uk/motoring/picturegalleries/9882839/Chinas-overloaded-delivery-vehicles-trucks-scooters-bikes-and-motor-tricycles.html?frame=2487082

Let’s fix that!
Build a central data platform where all data can
be stored, transformed and turned into value for
our customers.

Events

Config

ML

Reporting

Insights

(On prem) Data Platform

Problem solved?
Our new bottleneck was shipping these
precious artifacts back to our  
‘Application Platform’.

picture www.vitrifolk.be

http://www.vitrifolk.be/PHOTO/2014-02-22.html

Time to get to business..

The naive approach
Just treat it as yet another file processing problem..

The naive approach
Just treat it as yet another file processing problem..

hdfs://<NAME>/out

/<NAME>/in /<NAME>/out

hdfs://<NAME>/done

copy copy

Many downsides
It works but it is far from optimal.

When can I start?
Is it complete?
Where are we stuck?

Can I undo & rerun?  

Enter Airflow
EventStream
A write-ahead event log for all state changes of
airflow tasks.

- Execution date
- DAG Name
- Task Name
- State
- …

Custom PushOperator
For ‘Shipping’ artifacts and/or other metadata

{
 "dagName":"DAG_NAME",
 "taskName":"TASK_NAME_OR_MODEL_NAME",
 "time":"NOTIFICATION_TIME",
 "executionDate":"AIRFLOW_EXECUTION_DATE",
 "requestId”:"REQUEST_ID",
 "start": "START_DATE",
 "end": "END_DATE",
 "metadata": "METADATA",
 "payload": "PAYLOAD_MESSAGE_ONLY_JSON",
 "payloadURI":"PAYLOAD_FILES_LOCATION",
 "files":{
 "FILE_NAME":"MD5"
 }
}

Simple Consumer Pattern
Single consumer per DAG

Consumer is responsible for ‘transport’
(updating customer portal, notifying customer or simply ingesting the data)

Consumer is responsible for storing it's state
(i.e. how far have am I in reading the queue)

Eventual consistency, both systems can go down for maintenance without 
anyone noticing

Free integration with our ‘monitoring’ tooling.

Separation of concern

Big Data Platform: keep track of dependencies,
splitting the work in tasks and scheduling these
(i.e. it manages the factory in which the goodies
are produced)

AirflowConsumer: represents the customer and  
is responsible for delivering the final product to the  
doorstep, once it gets notified the goods are produced.  
But does not interfere with the production itself.

How did we build it?

Airflow Plugin
To expose REST API with all notifications  

(pending a proper event streaming platform that is available on both ends)

For adding automatic notifications on all tasks that do not add a notification (like the PushOperator)

Questions?

