
Airflow Summit
Operating Contexts
Patterns around defining how a DAG should behave in dev, staging, prod & beyond



Agenda
● Operating Contexts? - WTF
● Implementing OCs
● Typical Patterns
● Creative Patterns
● The case for OC semantics in Airflow’s IA

2



3

● Passionate about building data tools!

● Started Apache Airflow at Airbnb in 2014

● Started Apache Superset at Airbnb in 2015

● Started Preset - The Apache Superset company in 2019



4

Operating Contexts? - WTF

• [DISCLAIMER] THIS IS NOT AN AIRFLOW CONCEPT!

• Synonyms/related ideas: mode, DAG modifiers, parameterizable DAG, target

• A common pattern emerging from the flexibility of the DSL

• Definition: a declared mode of operation for a DAG that alters its shape or behavior in 

a deterministic way

• Example OCs: 

• development, staging & production

• Verbose / high test

• Backfill

• Fast/cheap mode

• ...



5

DAG Life Cycle



6

High level mechanics

How?
• Through environment variables!

• A function that returns a DAG object - can expose a clear function signature

What?

• Alter `DAG.default_args`

• Alter `DAG.params`

• Alter `conn_id`s

• Alter datasets names / pointers



7

Simplest Example



8

DAG function signature



9

Pattern #1 - Connections / Env mapping 

● Create different connections for different env
(ie: “snowflake”, “snowflake_staging”, “snowflake_dev”)

● Alter your default_args base on an envvar
 



10

Pattern #2 - Schema / Env mapping 

● Assuming clear mapping of environment to database schema 
mapping

● Apply suffix / naming scheme 
● It’s common to source from a production schema upstream

 



11

Pattern #3 - Crossover!
Source from prod [trusted, up to date] and load into a another env

 PROD

DEV

Dataset #1 Dataset #2 Dataset #3

SOURCE

Dataset #1 Dataset #2 Dataset #3



12

Pattern #4 - Limit dataset(s) 

● Apply one or many “LIMIT” clauses upstream
● Non deterministic, useful as a not-so-”dry run”
● Some specific assertions can be done with CheckOperators

 



13

Pattern #4 - Fixtures as source dataset

● Use a “fixture” as sources (static dataset)
● Perform specific checks & assertions 

 



14

The Case for incorporating this in Airflow

● Clear semantics (env var name, global variables)

● “Grepable”!

● An anchor point for best practices to be defined

● Coupling defaults around things like logging levels, ...



15

Conclusion

● No one can afford a full-scale staging DW

● Find the right patterns that are right for your DAG / team / org

● Get creative!

● Careful with the DAG-factory patterns

● No rules! If there were, you should break them



16

Upcoming

on

Medium



Cover Option 1

Data Lineage with Apache 
Airflow using OpenLineage

Julien Le Dem and Willy Lulciuc, Datakin | July 2021

17

CHECK THIS TALK OUT!



18


