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Xcom in a nutshell



Xcom Overview

Cross communication between tasks
- Pass parameters from one task to another
- Supports multiple parameters 
- Identified by key
- Intended for use within a single DAG

Usage: 
- “push” and “pull”

Uses the Airflow metadatabase (Postgres / MySQL)

xcom_push(

key = ‘return_value’, 

value = ‘my value’

)

value = xcom_pull(

task_ids=‘pushing_task’, 

key=‘return_value’

)



Xcom with TaskFlow API

Greater Abstraction
- Return values implicitly use xcom

- Focused on the most common pattern

- Supports python native types including 
dict

Pythonic functional use

def extract:

…

return order_data

…

order_data  = extract()

order_summary = 
transform(order_data)



Xcom limitations

Data types

As it stands, only the following datatypes are supported in Airflow 2.0
- Python native: dict, list, tuple, str, int, long, float, True, False, None
- Future: Airflow supported objects such as numpy objects, datetime, 

date, etc
- For security, pickling is no longer recommended



Github issues

Sample questions / problems
- Unable to store xcom because of 

MySQL Blob type limitation 65,535
- Data too long when pushing to XCOM
- Raise do_xcom_push size limit 
- Lambda to transform response before 

xcom push
- Provide shared storage between task 

via pluggable storage providers akin to 
S3 remote logging 



Custom XCom backends

Persistence class
● Python class specified in config

● Read at Airflow start up, 

Class needs to be in Airflow path

Methods needed:
● serialize_value
● deserialize_value

Used for storing and restoring data

● orm_deseralize_value

Used to display XCom data in UI



Custom XCom for Local Execution

● Write / read local file system
● Essential for development
● Local Executor

Not for distributed deployments with celery and 
Kubernetes Executors
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Xcom stored in local file system

Custom Xcom 
backend class

xcom_data
(file system)



Code walk through and demo



https://docs.google.com/file/d/16R-ugJqlNZLKFcHPKpYi5EMXLSjEEqxK/preview


Airflow distributed execution



Airflow distributed execution - kubernetes



Custom XCom for Distributed Execution

● Write / read cloud storage
● Accessible from any configured 

node
● Can be used with Celery and 

Kubernetes Executors

Higher latency, so could cause delays when used with short running tasks

More expensive than other options



Custom Xcom for Distributed Execution

● Write / read from Redis
● Accessible from any configured node
● Can be used with Celery and Kubernetes 

Executors
● Already part of the Airflow stack
Size limit of 512MB, so ideal for smaller dataset between 
short running tasks. 

Another caveat that Redis keeps everything in memory. 



Task 1 Task 2

xcom_index
(metadatabase)

Xcom stored in Redis or Cloud Storage

Custom Xcom 
backend class

xcom_data
Redis or Cloud Storage



Code walk through and demo



https://docs.google.com/file/d/1Ee8LDWYodVFE8xGih8ywTHnqdtxB1bZs/preview


Clutter

● Clean-up of old data in cloud 
storage or elsewhere 

● As data gets larger, data 
cleanup becomes more 
important

● System performance can 
degrade



Clean-up DAG

● Maintenance DAG to clean-up old 
Xcom data

● Deletes data from metadatabase 
and external locations

● Not tied to DAG lifecycle- needs to 
be configured carefully

● Downside if trying to rerun old tasks



Code walk through and demo



https://docs.google.com/file/d/16c2pasjWuZeezzAnbB6ITl1bRupR7MBi/preview


Success

We have addressed the core questions raised
● Handling of non-native objects such as Dataframes
● Large data sets between tasks
● Leveraging cloud storage
● Maintenance and cleanup



Limitations

Not tied to DAG life cycle management
● Data sharing across DAGs is difficult
● Maintenance DAGs for clean-up is a kludge

● Should be cleanly handled by Airflow when DAG is done



● Result of DAGs from one team is data
● Can be used by DAGs from other teams

● Key for cross-DAG dependencies
● Availability can be used to trigger follow-on DAGs

Integrated with DAG life cycle management and with Event driven DAGs 

Airflow Improvement Proposal upcoming

Future: Top level data object in Airflow 



Jobs at Astronomer

We are hiring Airflowers all over the world!

https://careers.astronomer.io/ 

https://linkedin.com/vikramkoka

Contact us: We would love to hear from 
you!

https://careers.astronomer.io/
https://linkedin.com/vikramkoka


Questions?


