
Customizing Xcom for data
sharing between tasks

Vikram Koka and Ephraim Anierobi

Introductions

Vikram Koka

Apache Airflow Committer

Senior Vice President Engineering at
Astronomer

Silicon Valley

Ephraim Anierobi

Apache Airflow Committer

Software Engineer, Open Source

at Astronomer

Nigeria

Task 1 Task 2

xcom_data
(metadatabase)

Xcom in a nutshell

Xcom Overview

Cross communication between tasks
- Pass parameters from one task to another
- Supports multiple parameters
- Identified by key
- Intended for use within a single DAG

Usage:
- “push” and “pull”

Uses the Airflow metadatabase (Postgres / MySQL)

xcom_push(

key = ‘return_value’,

value = ‘my value’

)

value = xcom_pull(

task_ids=‘pushing_task’,

key=‘return_value’

)

Xcom with TaskFlow API

Greater Abstraction
- Return values implicitly use xcom

- Focused on the most common pattern

- Supports python native types including
dict

Pythonic functional use

def extract:

…

return order_data

…

order_data = extract()

order_summary =
transform(order_data)

Xcom limitations

Data types

As it stands, only the following datatypes are supported in Airflow 2.0
- Python native: dict, list, tuple, str, int, long, float, True, False, None
- Future: Airflow supported objects such as numpy objects, datetime,

date, etc
- For security, pickling is no longer recommended

Github issues

Sample questions / problems
- Unable to store xcom because of

MySQL Blob type limitation 65,535
- Data too long when pushing to XCOM
- Raise do_xcom_push size limit
- Lambda to transform response before

xcom push
- Provide shared storage between task

via pluggable storage providers akin to
S3 remote logging

Custom XCom backends

Persistence class
● Python class specified in config

● Read at Airflow start up,

Class needs to be in Airflow path

Methods needed:
● serialize_value
● deserialize_value

Used for storing and restoring data

● orm_deseralize_value

Used to display XCom data in UI

Custom XCom for Local Execution

● Write / read local file system
● Essential for development
● Local Executor

Not for distributed deployments with celery and
Kubernetes Executors

Task 1 Task 2

xcom_index
(metadatabase)

Xcom stored in local file system

Custom Xcom
backend class

xcom_data
(file system)

Code walk through and demo

https://docs.google.com/file/d/16R-ugJqlNZLKFcHPKpYi5EMXLSjEEqxK/preview

Airflow distributed execution

Airflow distributed execution - kubernetes

Custom XCom for Distributed Execution

● Write / read cloud storage
● Accessible from any configured

node
● Can be used with Celery and

Kubernetes Executors

Higher latency, so could cause delays when used with short running tasks

More expensive than other options

Custom Xcom for Distributed Execution

● Write / read from Redis
● Accessible from any configured node
● Can be used with Celery and Kubernetes

Executors
● Already part of the Airflow stack
Size limit of 512MB, so ideal for smaller dataset between
short running tasks.

Another caveat that Redis keeps everything in memory.

Task 1 Task 2

xcom_index
(metadatabase)

Xcom stored in Redis or Cloud Storage

Custom Xcom
backend class

xcom_data
Redis or Cloud Storage

Code walk through and demo

https://docs.google.com/file/d/1Ee8LDWYodVFE8xGih8ywTHnqdtxB1bZs/preview

Clutter

● Clean-up of old data in cloud
storage or elsewhere

● As data gets larger, data
cleanup becomes more
important

● System performance can
degrade

Clean-up DAG

● Maintenance DAG to clean-up old
Xcom data

● Deletes data from metadatabase
and external locations

● Not tied to DAG lifecycle- needs to
be configured carefully

● Downside if trying to rerun old tasks

Code walk through and demo

https://docs.google.com/file/d/16c2pasjWuZeezzAnbB6ITl1bRupR7MBi/preview

Success

We have addressed the core questions raised
● Handling of non-native objects such as Dataframes
● Large data sets between tasks
● Leveraging cloud storage
● Maintenance and cleanup

Limitations

Not tied to DAG life cycle management
● Data sharing across DAGs is difficult
● Maintenance DAGs for clean-up is a kludge

● Should be cleanly handled by Airflow when DAG is done

● Result of DAGs from one team is data
● Can be used by DAGs from other teams

● Key for cross-DAG dependencies
● Availability can be used to trigger follow-on DAGs

Integrated with DAG life cycle management and with Event driven DAGs

Airflow Improvement Proposal upcoming

Future: Top level data object in Airflow

Jobs at Astronomer

We are hiring Airflowers all over the world!

https://careers.astronomer.io/

https://linkedin.com/vikramkoka

Contact us: We would love to hear from
you!

https://careers.astronomer.io/
https://linkedin.com/vikramkoka

Questions?

