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Unravel radically simplifies DataOps & has
strong adoption across platforms & industries

cover derstand ravel
* Brings together  Creates end-to-end view * Uses Al/ML to troubleshoot &
information about all of data pipelines to easily optimize apps to meet desired
your apps, clusters, track & understand issues performance & cost needs
resource utilization, « Tracks & reports on usage « Spots & fixes inefficient usage
users, & datasets in a across environments « Ensures efficiency, quality, &
single place « Checks for & alerts on performance of all apps in
anomalous behavior development & production
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Many enterprises are modernizing
their data stack and pipelines
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Many enterprises are modernizing their data
stacks and pipelines

TIDAL 2 Airflow
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Goals of modernization

* Improve agility
* Resources no longer become the constraint
* Reduce cost

Why Airflow gets picked as part of modernization:

» Well suited for agile development

» Better suited for cloud-native architectures than traditional schedulers
* Available as a service

ravel



Two main phases of modernization

Phase 1: Assess and Plan
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Phase 2: Migrate, Validate, and Optimize




Assess and Plan:
Lessons Learned
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Assess & plan phase of modernization
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Assess & plan phase: Lessons learned

= IEA I Pipeline discovery itself can be challenging
( « Multiple enterprise schedulers may be in
s ‘“\f impala 7| s | e || e use, e.g., Autosys, Informatica, Oozie,
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ravel



Fine-grained tracking for accurate planning
Meta_data Input Data KPls Output Data

— | A Workflow

Unravel has 4 recommendations to improve : pp efficiency.

HIVE Hive Query r& DURATION DATA I/0 # OF YARN APPS
i A
2 hive .h auser B default 10m 47s 101.60 GB 2
SUCCESS = cluster © 04/01/2117:23:08 MW 04/01/21 17:33:56 completed

Navigation Execution Graph Gantt Chart Tags Query Table Task Attempts Attempts Copy Query

TYPE STATUS 1D START TIME DURATION 1/0 A
1l INSERT OVERWRITE TABLi USER_ACTIVITY I’ARTITION C

[ MR | ...2576110  04/01/21 17:25:55 3m 12s 101.20GB 2 2l RCARESORY
3 ,PARTITION_DATE

[ MR | ...2576655  04/01/2117:31:36 2m 5s 413.22MB 2 . ) ) . .y
S select member_guid , activity_date , product , count(*) as activity
6 from
7 (¢
8 select upper(split(userguid , "[@]')[@]) as member_guid , case when
9 when (Cupper(params['event.type']) = 'DOWNLOADHIGHRES' OR upper(paran
10 when upper(params['event.type']) = "SEARCH' then 'SEARCH'
11 event_date as activity_date
12
13 stock_events
14
45 upper(params['event.type']) IN ('DOWNLOADWATERMARKED' , "DOWNLOADHI(
1c AND AviAan + Aatra «_ Aara cndhh7TIA21 A2 217 2N AND AviAan + A~aka > BRI AVEYE
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Fine-grained tracking for accurate planning

Metadata Input Data KPlIs Output Data

— | A Workflow

Unravel has 4 recommendations to improve : pp efficiency.
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The annotated lineage graph

cmusg dm
crrusg dim

-~ ; : A > wirehouse

Cernusg.dim.

cmusg aim

comapps.ir_. Jccmapps ot

do.acrobet l
e L

b

CMUSg 00

COmapps. ¥




Picking the best migration execution strategy

Compute-heavy pipeline

D1 with bursty resource needs
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Migrate, Validate, and Optimize:
Lessons Learned
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Migrate, Validate, & Optimize phase of

modernization
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Undesired Behavior

Wrong results, Failing pipelines

Missed SLAs, Growing lag/backlog

Cost overruns, Going over budget




Guaranteeing pipeline correctness after
migration

Ensure that the right checks are in place to validate correctness after the
migration

Example checks:

 Daily partitions of Table “SignupsAndSubs” should have at least 1000 records
« “customerPinNumber” should not be NULL

Tools like Great Expectations make it easy to define checks

ravel



Guaranteeing pipeline performance after
migration

Ensure that baselining is done and SLAs are defined to ensure performance
needs are met after the migration

Example SLAs:
 Pipeline should finish by 6:00 AM PST
« Data in dashboard generated by the pipeline should not be older than 10 mins

SLAs can be defined in Airflow

Tools like Unravel help pinpoint bottlenecks and suggest performance fixes

ravel



Controlling pipeline costs after migration

Ensure that cost budget estimation & planning are done before the migration
Example budget specifications:

« Cost of any one run of the “Bl-report” pipeline should not exceed $100

« Budget for the pipelines generating the “probable churn” table is $1M/month

Tools like Unravel help with cost projection and also recommend fixes for cost
inefficiencies

ravel



Demo
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Sign up for a free trial!

https://unraveldata.com/saas-free-trial
shivhath@unraveldata.com
hari@unraveldata.com

Check out our next talk:
Data Pipeline HealthCheck for
Correctness, Performance, and Cost Efficiency
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