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Why are we here?

Operations Team
(This is us)

Airflow Users

Airflow

There’s only a few of us, we have a lot of users
Users have high expectations and diverse requirements

How can we keep our users happy?

1) Make Airflow reliable
2) Make Airflow easy to use

Our Users
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10,000+
Dags in a single environment

How we use Airflow

7,000,000
Tasks executed every month

~3 second
First task start latency

~3
Infrastructure engineers managing 

Airflow



What do we run on 
Airflow?

● Data ingestion (Streams, DBs and APIs)
● Trino and BigQuery-powered DBT models
● ML Model Training
● Machine Learning Offline Inference
● Apache Iceberg Table Maintenance
● Data Expiration and Deletion
● Data Aggregations and Loads

What runs on Airflow?



History of Airflow at Shopify

2021

Airflow adoption

Upgraded Airflow to 2.0. Completion 
of Azkaban migration 

2022

Airflow is status quo

Completion of Oozie migration 
(Exact date TBD)

2019

Moving towards a unified scheduler

Running Oozie, Azkaban and some 
single-team Airflow instances
Decided to commit to Airflow as a 
unified scheduling solution

2020

Centralized Airflow environment

Started to move decentralized jobs 
to a centralized Airflow environment



Airflow Architecture



Airflow Reliability
(Making our Job Easier)



Case Study 1: Testing

“How do I know that this Airflow upgrade won’t break things?”



Testing, Testing, Testing

Unit Tests Smoke Tests Load Tests

What are we Testing? DAGs and Operators Operators Airflow Infrastructure

Written by? DAG + Operator Authors Us Us

When are they run? Constantly During Upgrades During Upgrades

Thorough test coverage can be used to minimize disruptions and prevent errors.

We test our Airflow environment in multiple ways to ensure smooth operation for our users. 

 



Unit Tests

Test the basic functionality of all DAGs and Operators.

It can be pretty hard to test the functionality of a DAG end-to-end, but we can at least make 
assertions about the structure and composition of the job. 

Other good things to test:

- That there’s no duplicated DAG IDs
- That all DAGs are importable
- That any DAG Factory or DAG templating code is generating valid DAGs. 

This is also a good time to pick up on transitive dependency issues[1]  

[1] You should pre-compile the dependencies in your production containers!



Airflow upgrades can introduce changes to operator interfaces as well as underlying libraries.

For example, sometimes operators which subclass an upstream operator can be sensitive to 
changes in the parent class.

How can we ensure that a new upgrade is compatible with all most[1] of our DAGs?

1) Decide on a set of “Supported” operators 
and components

2) Create a DAG which uses all of these operators 
in a production-like way

3) Just run this DAG every time something changes.

Smoke Tests

[1] Without restricting Airflow usage to a set of managed abstractions, it’s not realistic to guarantee no issues after an upgrade

[2] We use the KubernetesPodOperator for the vast majority of our tasks - shout out to Bluecore for that awesome blog post

[2]



“Will Airflow withstand the increased volumes of data around Black Friday?”

“We’re planning on adding 15,000 DAGs this year, is that gonna break 
anything?”

“Are there any performance regressions in this new 
version of Airflow, with our scale and infrastructure?”

Load Tests

“How does the frequency of jobs correlate to the 
first-task start latency latency?”

We need a way to answer these questions in a production-like environment, without the fear of disrupting 
production workloads.

Our Users

Us



- Create a randomized, 
parameterizable ensemble of jobs 
from a single python file.

- Try to emulate production 
workloads as closely as possible.

- Scale up the non-production 
environment to the same scale as 
the production one.

Load Tests

Gotchas:

- This does not test the capacity of downstream systems, such as your processing infrastructure
- Remember to vary the shape of your DAGs as well, to better emulate a real workload
- Remember to seed your RNG, so that the file processor sees the same DAGs every time.

NUM_DAGS = Variable.get('LOAD_TEST.COUNT')

MAX_DAG_DEPTH = Variable.get('LOAD_TEST.MAX_DEPTH')

random.seed(1)

for i in range(NUM_DAGS):

   dag = DAG(f'load-test.dag-{i}', schedule_interval=get_interval())

   for i in range(randint(MAX_DAG_DEPTH))

       task = KubernetesPodOperator(

           dag=dag,

           task_id='task_{i}'

   ... 

   globals()[f'dag-{i}'] == dag

Code Sample 1: Creating a parameterized ensemble of DAGs in one file

* abridged to fit on a slide



Case Study 2: Policies and Guardrails

“How do we maintain control over all of these DAGs?”



Multi-tenancy via Airflow Manifests

projects:

 data_extracts:

   owner_email: 'etl-team'

   source_repository: 'https://github.com/my_org/extracts'

   constraints:

     namespaces:

       - 'etl-jobs'

     pools:

       - 'extracts'

 batch_processing:

   owner_email: 'spark-team'

   source_repository: 'https://github.com/my_org/batch_jobs'

   constraints:

     namespaces:

       - 'batch'

     pools:

       - 'batch'

$AIRFLOW_HOME/airflow_projects.yaml

All workloads have to be registered (it’s easy!)

This file is used to determine which files to load 
to the Airflow environment.

It also allows us to create specifications which 
each workload must conform to.

A helper script allows users to easily register a 
new “namespace” in Airflow, define its 
constraints and specify which environments it is 
deployed to. 

Code Sample 2:
An example of an airflow environment’s manifest 
file with two namespaces. 



dag_policy

Implementing a dag_policy allows you 
to conditionally reject DAGs at time of 
loading.

We read the manifest file within a 
dag_policy function and ensure that 
DAGs conform to their specification.

def dag_policy(dag: DAG) -> None:

   airflow_home = os.environ.get('AIRFLOW_HOME', '~/airflow')

   manifest_path = f"{airflow_home}/airflow_manifest.yaml"

   with open(manifest_path, "r", encoding="UTF-8") as manifest_file:

       manifest = yaml.safe_load(manifest_file)

   dag_namespace = dag.dag_id.split(".")[0]

   if dag_namespace not in manifest["projects"]:

       raise AirflowClusterPolicyViolation(

           f"Namespace {dag_namespace} is not registered."

       )

   constraints = manifest["projects"][dag_namespace]["constraints"]

   validate_pools(dag, constraints["pools"])

$AIRFLOW_HOME/airflow_local_settings.yaml

Code Sample 3:
This dag_policy will ensure that a DAG is 
registered in the manifest file and only launches 
tasks in the permitted pools 



Case Study 3: Platform Considerations

“How can we minimize the amount of downtime?”



Separation of Environments

Production Staging Development

Scale Large Small Small

Who Can Upload? Continuous Deployment Everyone Operators Only

Sends Alerts Yes Yes No

Sends Pages Yes No No

Gotchas:

- Version / Provider / Plugin drift between Production and Staging
- Different behaviour performance across environments due to scale

Roll out updates in reverse-priority: Development -> Staging -> Production



Pros:

- Full auditability of all user activity
- No need to maintain credentials and connections on users’ machines
- Provides an environment which is consistent with production
- Faster to get up and running with DAG Development 

Cons:

- Creates an additional environment to support
- A single point of failure if (when) someone pushes a troublesome job
-  Syntax highlighting and some IDE features don’t work well locally

* Interested in these tradeoffs?
Check out Lyft’s talk later this week to learn about how they create single-user remote development environments.

Why use a remote staging environment?



Monitoring
Use a monitoring DAG!

This DAG runs every minute and emits some basic metrics. If those metrics go missing then we 
can assume airflow isn’t happy. 

The calendar view also gives a nice overview of uptime:

Gotchas:

- Ensure that this DAG is running with a high priority_weight
- If you’re using separate queues, you may need one task per queue.

 28-day 
 retention 



Large volumes of metadata can 
seriously impede in-place upgrades of 
Airflow, especially when larger 
migrations are involved

Just use a DAG to delete old data 
(AIP-44 will break this!)

Fun Fact: We took down our production 
Airflow environment for ~3 hours while 
upgrading from 2.1.2 to 2.2.2 

Metadata Truncation

Gotchas:

- Be careful not to delete dagrun history which is relied on by backfills
- Be careful not to delete “active” data (currently running jobs, DAGRuns, etc)

with DAG(

   'truncate_metadata',

   schedule_interval=timedelta(days=1),

   start_date=datetime(2021, 1, 1),

   catchup=False

) as dag:

   cleanup_task = PythonOperator(

       task_id='truncate_metadata'

       python_callable=delete_metadata

   )

* this is a simplification

Code Sample 4: Obligatory DAG Code



User Experience
(Making our User’s Job Easier)



Case Study 4: GitOps

“I need to add a Pool, but I’m not an Admin”



Managing Connections via Github

Airflow connections in Github? It’s easier than you think!

1) Use Shopify’s open source ejson[1] to store encrypted sensitive values alongside DAGs.
2) Deploy these changes to your Airflow environment alongside your DAGs.
3) A project loader script running on the scheduler decrypts these files and load connections into the DB

 

Gotchas:

- Use a pre-commit hook to ensure nobody commits unencrypted secrets
- Prefix connections with workspace name to maintain a clear path of ownership

[1] https://github.com/Shopify/ejson



Managing Pools and Users from Github

Similar to before, but with less secrecy. Also these aren’t namespace-specific.

1) Specify the connections and admin users in a .yaml file which is mounted as a Kubernetes ConfigMap
2) In an Airflow DAG, load up this file and create / update pools and users as required

 

Gotchas:

- Use CODEOWNERS to prevent users from escalating their own privilege.



Case Study 5: Surf

“How can I interact with the remote Environment?”



What can surf do?
- Upload DAGs directly to staging, with immediate user feedback.
- Trigger, List and Monitor DAGs
- Upload Connections to staging
- Pause, Resume or Fail DAGs in bulk

What is surf?

- Opinionated CLI for interacting with remote Airflow environments
- Integrated with a browser-based auth flow for secure API access



(Partial) Syntax Reference

surf dags list <prefix>

Lists all DAGs matching the provided prefix

surf dags <pause|resume> <prefix>

Pause or resume multiple DAGs based on the provided pattern

surf dags trigger <dag_id> -d <key>=<value>

Trigger the specified DAG, with the option of adding dagrun config

surf dags fail <pattern>

Mark the most recent in-progress run of a given DAG as failed.

surf staging dags push <filepath>

Upload the specified file to the staging environment and trigger its import.



from airflow.models import DAG
from airflow.operators.bash import BashOperator

MESSAGE = """
_       __     __                             __                            
| |     / /__  / /________  ____ ___  ___     / /_____                       
| | /| / / _ \/ / ___/ __ \/ __  __ \/ _ \   / __/ __ \                      
| |/ |/ /  __/ / /__/ /_/ / / / / / /  __/  / /_/ /_/ /                      
|__/|__/\___/_/\___/\____/_/ /_/ /_/\___/___\__/\____/                   _ __
   /   |  (_)____/ __/ /___ _      __   / ___/__  ______ ___  ____ ___  (_) /_
  / /| | / / ___/ /_/ / __ \ | /| / /   \__ \/ / / / __  __ \/ __  __ \/ / __/
 / ___ |/ / /  / __/ / /_/ / |/ |/ /   ___/ / /_/ / / / / / / / / / / / / /_ 
/_/  |_/_/_/  /_/ /_/\____/|__/|__/   /____/\__,_/_/ /_/ /_/_/ /_/ /_/_/\__/                                             
"""

dag = DAG(
   dag_id='data-infrastructure-examples.my-dag',
   schedule_interval=None,
   catchup=False
)

task = BashOperator(
   dag = dag,
   task_id='say_hello',
   bash_command=f'echo "{MESSAGE}"'
)

Code Sample 4: my_dag.py

I’ve been working on this 
DAG in preparation for 
Airflow Summit. 

I wanna make sure it works, 
so I’d like to run it in 
staging ASAP!



Examples:

> time surf staging dags push dags/data_infrastructure_examples/my_dag.py  

Checking dags/data_infrastructure_examples/my_dag.py for syntax errors
Syntax error check successful!
Starting upload to GCS…
Successfully uploaded DAG to GCS

'Traceback (most recent call last):\n  File 
"/usr/local/lib/python3.9/site-packages/airflow/models/baseoperator.py", line 840, in dag\n    
dag.add_task(self)\n  File "/usr/local/lib/python3.9/site-packages/airflow/models/dag.py", 
line 2139, in add_task\n    raise AirflowException("Task is missing the start_date 
parameter")\nairflow.exceptions.AirflowException: Task is missing the start_date parameter\n'

Your DAG has uploaded with errors, please review the logs and resolve any errors before 
uploading again

2.34s user 0.26s system 62% cpu 4.189 total

                           ____/ (  (    )   )  \___
                         /( (  (  )   _    ))  )   )\
                       ((     (   )(    )  )   (   )  )
                     ((/  ( _(   )   (   _) ) (  () )  )
                    ( (  ( (_)   ((    (   )  .((_ ) .  )_
                   ( (  )    (      (  )    )   ) . ) (   )
                  (  (   (  (   ) (  _  ( _) ).  ) . ) ) ( )
                  ( (  (   ) (  )   (  ))     ) _)(   )  )  )
                 ( (  ( \ ) (    (_  ( ) ( )  )   ) )  )) ( )
                  (  (   (  (   (_ ( ) ( _    )  ) (  )  )   )
                 ( (  ( (  (  )     (_  )  ) )  _)   ) _( ( )
                  ((  (   )(    (     _    )   _) _(_ (  (_ )
                   (_((__(_(__(( ( ( |  ) ) ) )_))__))_)___)
                   ((__)        \\||lll|l||///          \_))
                            (   /(/ (  )  ) )\   )
                          (    ( ( ( | | ) ) )\   )
                           (   /(| / ( )) ) ) )) )
                         (     ( ((((_(|)_)))))     )
                          (      ||\(|(|)|/||     )
                        (        |(||(||)||||        )
                          (     //|/l|||)|\\ \     )
                        (/ / //  /|//||||\\  \ \  \ _)



import pendulum  # needed this
from airflow.models import DAG
from airflow.operators.bash import BashOperator

MESSAGE = """
_       __     __                             __                            
| |     / /__  / /________  ____ ___  ___     / /_____                       
| | /| / / _ \/ / ___/ __ \/ __  __ \/ _ \   / __/ __ \                      
| |/ |/ /  __/ / /__/ /_/ / / / / / /  __/  / /_/ /_/ /                      
|__/|__/\___/_/\___/\____/_/ /_/ /_/\___/___\__/\____/                   _ __
   /   |  (_)____/ __/ /___ _      __   / ___/__  ______ ___  ____ ___  (_) /_
  / /| | / / ___/ /_/ / __ \ | /| / /   \__ \/ / / / __  __ \/ __  __ \/ / __/
 / ___ |/ / /  / __/ / /_/ / |/ |/ /   ___/ / /_/ / / / / / / / / / / / / /_ 
/_/  |_/_/_/  /_/ /_/\____/|__/|__/   /____/\__,_/_/ /_/ /_/_/ /_/ /_/_/\__/                                             
"""

dag = DAG(
   dag_id='data-infrastructure-examples.my-dag',
   schedule_interval=None,
   start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), # also this
   catchup=False
)

task = BashOperator(
   dag = dag,
   task_id='say_hello',
   bash_command=f'echo "{MESSAGE}"'
)

Code Sample 5:
git commit . -m  “oops”



Examples:

> time surf staging dags push dags/data_infrastructure_examples/my_dag.py

Checking dags/data_infrastructure_examples/my_dag.py for syntax errors
Syntax error check successful!
Starting upload to GCS…
Successfully uploaded DAG to GCS
Parsed 1 DAG(s)
Successfully uploaded DAG to Airflow Scheduler

 2.40s user 0.22s system 69% cpu 3.765 total

“With a remote development experience like this, who needs a local environment?”

- I said this to our users



> surf dags trigger data-infrastructure-examples.my-dag

Using environment: staging
Found 1 DAG:
 - data-infrastructure-examples.my-dag

Trigger 1 DAG? [y/N]: y
[ OK     ] Trigger data-infrastructure-examples.my-dag

https://airflow.staging.webserver/graph?dag_id=data-infrastructure-examples.my-dag&dag_run_id
=manual__2022-05-11T16%3A35%3A09.504382%2B00%3A00&exec_date=2022-05-11T16%3A35%3A09.504382%2B
00%3A00

Examples:

Can you start this DAG?

OK.





What’s Next?

30,000 DAGs  🚀
Airflow 2.3 🎉

Multiple Prod 
Environments 

Kubernetes 

Executor  ☸

More
Contributions 📈



Thanks for Watching

Thanks again to:

 The rest of the Data Foundations team at Shopify

The Airflow development team

The Airflow Summit organizers

Wanna chat about our presentation? You can find either of us on the official Airflow Slack.


