Preventative Metadata: Building for Data Reliability with DataHub, GE, & Airflow

John Joyce I Co-Founder I Acryl Data
Tamas Nemeth I Software Engineer I Acryl Data

Airflow Summit 2022

Acryl Data

About Us

John Joyce
Co-Founder / Engineer

Tamas Nemeth
Software Engineer

About Acryl Data

Company

Founded early 2021 by data engineers from LinkedIn, Airbnb

What we do

Bring clarity & control to complex data ecosystems by driving forward the open source <u>DataHub</u> project

Team

14 FTE, 3 interns, 5+ puppers

Agenda

- 1. What is DataHub?
- 2. What is Data Reliability?
- 3. Building for Data Reliability

What is DataHub?

What is DataHub? 👏

DataHub is an open source metadata platform that enables Data Discovery, Data Observability, and Federated Governance on top of a high-fidelity Metadata Graph.

What is DataHub? 👏

See it in action! → <u>demo.datahubproject.io</u>

What is DataHub? 🔎

The #1 Open Source Metadata Platform

Integrations

Adopters

Community

The DataHub Way

MetaOps Principles

Metadata 360

Bridge the gap between technical and logical metadata to create a "360-view"

Shift Left

Declare metadata at source

Collect metadata in real time

Active Metadata

Put metadata to work in the operational plane

What is Data Reliability?

What is Data Reliability?

Reliable → "consistently good in quality or performance. Able to be trusted." - Oxford dictionary

Reliability → "the overall consistency of a measure" - Wikipedia

Data Reliability can be thought of as the overall consistency of _____ Data Quality

Quality vs. Reliability

Data Quality

Data Reliability

Realizing Data Reliability

Why should I care?

Data is becoming a **product**.

Challenges

Scale

Complexity

Challenges

An emergent challenge: Separating **signal** from **noise**

Building for Data Reliability

Pattern 1: Consumer-side Validation

Pattern 1: Consumer-side Validation

Downsides: ad-hoc / inconsistent, partial coverage, duplicative efforts

Pattern 2: Async Validation

Pattern 2: Async Validation

Pattern 2: Async Validation

Can we do better?

An improvement: Sync Validation

Metadata-Driven Orchestration

1. Report metadata

2. Check metadata

2. Check metadata

2. Check metadata

A Practical Example

A pipeline from scratch

Prospective Adopters

A problem: Delayed Data

One day...

Prospective Adopters

A problem: Delayed Data

One day...

Prospective Adopters

DataHub Operations

Reporting Operations

```
def report_operation(context):
    hook: DatahubRestHook = DatahubRestHook("datahub longtail")
    host, password, timeout sec = hook. get config()
                                                                   Setup a datahub connection
    reporter = OperationReporter(
        datahub_host=host, datahub_token=password, timeout=timeout_sec
                                                                             Create an operation reporter
    task = context["ti"].task
    for outlet in task. outlets:
        print(f"Reporting insert operation for {outlet.urn}")
        reporter.report_operation(urn=outlet.urn, operation_type="INSERT")
                                                                               Report operation data for all task outlets to Datahub
pet_profiles_load = BashOperator(
    task_id="load_s3_adoption_pet_profiles",
    dag=dag,
    inlets=[Dataset("s3", "longtail-core-data/mongo/adoption/pet_profiles")],
                                                                                       Define Inlets and outlets with Datahub Dataset
    outlets=[Dataset("snowflake", "long_tail_companions.adoption.pet_profiles")],
    bash command="echo Dummy Task",
    on success callback=report operation, Report operation data on success
```


DataHub Operations

DataHub Operations Circuit Breaker

```
pet_profiles_operation_sensor = DatahubOperationCircuitBreakerSensor(
                                                                              Set up an Operation Circuit Breaker Sensor
    task_id="pet_profiles_operation_sensor",
    datahub_rest_conn_id="datahub_longtail",
    urn=[
                                                         List of dataset urns to check for operation data
         "urn:li:dataset:
(urn:li:dataPlatform:snowflake,long_tail_companions.adoption.pet_profiles,PROD)"
    time_delta=datetime.timedelta(hours=12),
                                                  The time delta we expect to have operational data
```


Demo

Another problem: Broken Data

A few months later...

Another problem: Broken Data

A few months later...

Another problem: Broken Data

A few months later...

DataHub Assertions

Reporting Assertions

Step 1: Define Assertions . . . "expectation_type": "expect_table_row_count_to_be_between "kwargs": { "min value": 40000. "max_value": 50000 "meta": {} "expectation_type": "expect_column_values_to_be_in_set", "kwaras": { "column": "sex", "value set": ["meta": {} "expectation type": "expect column values to not be null", "kwaras": { "column": "sex" "meta": {}

Step 2: Run assertions and push result to Datahub

DataHub Assertions

DataHub Assertions Circuit Breaker

Demo

Another problem: Broken Data Part 2

A few weeks later...

Another problem: Broken Data Part 2

A few weeks later...

Another problem: Broken Data Part 2

A few weeks later...

Prospective Adopters

Tests can't catch everything

DataHub Incidents

Step 1: Raise Incident

DataHub Incidents

DataHub Incidents Circuit Breaker

```
def incident test pre execute(context):
    hook: DatahubRestHook = DatahubRestHook("datahub longtail")
                                                                     Set up a Datahub Connection
    host, password, timeout_sec = hook._get_config()
    config: IncidentCircuitBreakerConfig = IncidentCircuitBreakerConfig(
        datahub_host=host, datahub_token=password, timeout=timeout_sec
                                           Define an Incident Circuit Breaker
    cb = IncidentCircuitBreaker(config)
    ti = context["ti"]
    inlets = get_inlets_from_task(ti.task, context)
                                                       Get all the inlets for the task
    for inlet in inlets:
        print(f"Checking if there is any incident for Urn: {inlet.urn}")
        if cb.is_circuit_breaker_active(inlet.urn):
                                                                           Circuit break on any active incident
            print(f"Incident Circuit Breaker is active for {inlet.urn}")
            raise Exception(f"Incident Circuit Breaker is active for {inlet.urn}")
            print(f"Incident Circuit breaker is closed for {inlet.urn}")
    return
```


Demo

Revisiting Reliability

Achieving Scale: Centralizing Control

Key characteristics of a solution

- Leverage: Decouple Policy Definition from Policy Enforcement / Evaluation
- Flexibility: Seamless Policy Evolution
- **Configurability**: Apply targeted policies to most important assets
- **Usability**: Integration by default

DataHub Tests

DataHub Tests

Central policy definition, distributed enforcement

DataHub Tests Circuit Breaker

Step 1: Define Task policy in airflow_local_settings.py

```
Set up Datahub Connection
def metadata_test_pre_execute(context) -> None:
    hook: DatahubRestHook = DatahubRestHook("datahub longtail")
    host, password, timeout_sec = hook._get_config()
                                                                         Create a Metadata Test Circuit Breaker
    config: MetadataTestCircuitBreakerConfig = MetadataTestCircuitBreakerConfig(
        datahub host=host,
        datahub_token=password,
        timeout=timeout sec.
    cb = MetadataTestCircuitBreaker(config)
    print(f"context: {context}")
                                                                          Check if all the metadata tests pass for all the inlets of the task
    ti = context["ti"]
    inlets = get_inlets_from_task(ti.task, context)
    for inlet in inlets:
        print(f"Urn: {inlet.urn}")
        if cb.is_circuit_breaker_active(inlet.urn):
            print(f"Circuit Breaker is active for {inlet.urn}")
            raise Exception(f"Metadata Test Circuit Breaker is active for {inlet.urn}")
            print(f"Metadata Test Circuit breaker is closed for task policy Which get applied to every task in
                                                        every dag
def task_policy(task: BaseOperator):
    print("Applying task policy")
    task.pre_execute = metadata_test_pre_execute
```

Demo

Realizing Reliability

Preventative Metadata: The DataHub Reliability Toolkit

Summary

- **☆ Data Quality** → Availability, Timeliness, Correctness
- **Data Reliability** → Data Quality through time

A new approach: building for Data Reliability using Metadata-driven Orchestration

How the **DataHub Operational Toolkit** can help Airflow users:

- ② Operations → availability, timeliness
- **✓ Assertions + Incidents** → correctness
- **i Tests** → achieving scale

Try Acryl DataHub

https://www.acryldata.io/sign-up

Join the MetaOps Movement

acryldata.io datahubproject.io slack.datahubproject.io @datahubproject

Try Open Source DataHub

- pip install acryl-datahub
-) datahub docker quickstart

Acryl Data is Hiring!

CAREERS

Join Our Team

Join us in bringing clarity to data by enabling delightful search and discovery, data observability, and federated governance across data ecosystems.

Culture

At Acryl Data, collaboration is key, curiosity inspires action, and ambition and empathy is our (not so) secret sauce.

Values

We are a community-first, impact-driven team committed to representing the lived experiences, unique perspectives, and communities around us.

Questions?

john@acryl.io tamas@acryl.io

