
A look under the
hood of the

Airflow logging
subsystem

Airflow Summit 2022
May 24 2022 @ New York Times Building

Philippe Gagnon

+Solutions Architect 🏗 @ Astronomer, Inc. 🔭
+Based in Montreal, Canada 󰎟
+Works on data platform architecture and
implementation in heavily regulated industries (e.g.
finance 🏦, healthcare 🏥) since 2017, mostly around
stacks relying on open-source projects with top-tier
communities

What is covered

Logging in Airflow at a high level

Default file-based logging process

Remote logging to object storage

Remote logging to dedicated services

Roll your own task log handler

Airflow logging at a high level

Airflow logging core concepts
+ Leverages the stdlib logging module

+ Everything is really configured through airflow_local_settings.py

+ Defines three loggers: airflow.processor, airflow.task,
flask_appbuilder, along with the root logger.

+ Logs retrieval is provided by implementing a read(…) method in
task handlers (not part of the stdlib spec!)

+ Logs display in the webserver is implemented through the
TaskLogReader class.

Airflow logging initialization

dictConfig schema details
{
 version, # must be 1
 formatters,
 filters,
 handlers,
 loggers,
 root,
 incremental, # if False: replaces the existing configuration
 disable_existing_loggers, # disables existing loggers
}

Out of the box
+DEFAULT_LOGGING_CONFIG dictionary passed to
logging.config.dictConfig

+ Handlers: RedirectStdHandler (root), FileTaskHandler (task
logs), FileProcessorHandler (dag processor logs)

+ File…Handlers wrap NonCachingFileHandler which inherits from
stdlib’s FileHandler

+ RedirectStdHandler outputs to sys.stderr/stdout

Default logging graph

Writing logs using FileTaskHandler
+ Writes to local filesystem.

+ Delegates to FileHandler.emit(…)

+ Logs routed to proper file according to template defined in
airflow.cfg log_filename_template (_render_filename)

+ Log directory and permissions created via _init_file

FileTaskHandler read(…) logic

Remote Logging
+ Feature enabled through airflow.cfg (set remote_logging
= True)…

+ … but actually configured in airflow_local_settings.py

if REMOTE_LOGGING:
 if REMOTE_BASE_LOG_FOLDER.startswith('gs://’):
 ...
 DEFAULT_LOGGING_CONFIG['handlers'].update(GCS_REMOTE_HANDLERS)
 elif REMOTE_BASE_LOG_FOLDER.startswith('s3://'):
 ...
 DEFAULT_LOGGING_CONFIG['handlers'].update(S3_REMOTE_HANDLERS)
 elif REMOTE_BASE_LOG_FOLDER.startswith('cloudwatch://'):
 ...
 DEFAULT_LOGGING_CONFIG['handlers'].update(CLOUDWATCH_REMOTE_HANDLERS)

Remote Logging to Object Storage
+ Amazon S3, Google Cloud Storage, Azure Blob Storage mainly.

+ Very important to note is that this mechanism only uploads logs to
object storage when the logging handler is closed, which in
normal circumstances only happens when the application (i.e.
task in this case) exits.

+ This is implemented by overloading the close(...) method in
the log handler.

Example: Logging to S3

Remote Logging to external log services

+Elasticsearch, Cloudwatch Logs, Stackdriver (Google Ops Suite)

+⚠ These log handlers only implement read functionality, and
defer to FileTaskHandler for writing!

+ It’s necessary to rely upon an external application to ship logs to
the remote logging service

+ In general, that ends up being fluentd, fluentbit or logstash

Example: Logging to Elasticsearch

Primer on rolling your own

class MyTaskHandler(logging.Handler, LoggingMixin):
 def __init__(self):
 super(MyTaskHandler, self).__init__()

 def emit(self, record: logging.LogRecord):
 <Logic to ”stream” logs goes here>

 def close(self):
 <Logic to ship logs in bulk goes here>

 def read(self, task_instance, try_number=None, metadata=None):
 <Logic to fetch logs goes here>

Or starting from FileTaskHandler

class MyTaskHandler(FileTaskHandler, LoggingMixin):
 def __init__(self):
 super(MyTaskHandler, self).__init__()

 def emit(self, record: logging.LogRecord):
 ...

 def close(self):
 ...

 def _read(self, task_instance, try_number=None, metadata=None):
 ...

Thank you! ❤

P.S. We brought swag! Come see me!

👕🌈✨

