
ANDREW GODWIN // @andrewgodwin

 ALL ABOUT
DEFERRABLES

Hi, I’m

Andrew Godwin

• Principal Engineer at

• Primary author of Deferrable Operators core

• Somehow at 15 years of writing Python

Why Deferrables?
Did we really need a whole new concept?

How They Work
The answer is not just "Very Well, Thank You"

What's next?
There's a lot more we can do with this

Why defer?
And what is deferring anyway?

Scheduler

Executor

Scheduler

TIME

Scheduler

Save Data

Scheduler

TIME

Fetch Data CPU Intensive Processing

Executor

Scheduler

Confirm Job

Scheduler

TIME

Submit Job Wait for external system

Executor

Scheduler

Confirm Job

Scheduler

TIME

Submit Job Wait for external system

Executor

Wasted Resources!

TIME

Wait for external system

Executor

Wasted Resources!

Opportunity Cost
A wasted slot on Celery, wasted reservation on Kubernetes

Scheduler

Executor

Scheduler

TIME

Executor

Triggerer

The Triggerer is asynchronous
It can run thousands of triggers at once!

TIME

Task 1 Task 2

TIME

Task 1 Task 2Task 2 Task 3 Task 1 Task 3 Task 4

The longer the wait, the better the saving
We've seen over a 90% reduction in resources for a 10 min wait

So, how does it work?
It works very well, thank you.

You hand off to a Trigger
This is a new class of workloads alongside Operators

More Restrictions
Triggers are more limited than Operators so they can be efficient

Must be asynchronous
So we can run thousands per CPU core

No persistent state
So we can shuttle them around between Triggerers as needed

Must support multiple copies
For reliability during network partitions

class DateTimeTrigger(BaseTrigger):

 def __init__(self, moment: datetime.datetime):

 super().__init__()

 self.moment = moment

 def serialize(self):

 return ("mymodule.DateTimeTrigger", {"moment": self.moment})

 async def run(self):

 while self.moment > timezone.utcnow():

 await asyncio.sleep(1)

 yield TriggerEvent(self.moment)

class WaitOneHourSensor(BaseSensorOperator):

 def execute(self, context):

 self.defer(

 trigger=TimeDeltaTrigger(timedelta(hours=1)),

 method_name="execute_complete",

)

 def execute_complete(self, context, event=None):

 # We have no more work to do here. Mark as complete.

 return

Of course, we did some for you
Both in Airflow core and in astronomer-providers

Not everything can be deferred
It must be an external event/system with a portable identifier

What's next?
Turns out, Triggers are generally useful

More operator support for deferring
There's not a lot of reasons not to use it

Triggers for DAGs
Will likely play into the new Dataset work

Expanding async workload support
The triggerer should really be part of the Executor contract

Making more of Airflow async
It's not just the operators that sit there and idle a lot

Airflow is forged by people like you.
Want to help with any of this? Get in touch!

Thanks.
Andrew Godwin

@andrewgodwin
andrew.godwin@astronomer.io

