

Multi-tenancy is coming
All you wanted to know about multi-tenancy
… but were afraid to ask

Airflow Survey!

https://bit.ly/AirflowSurvey22

https://bit.ly/AirflowSurvey22

About us

Independent Open-Source Contributor and Advisor
Airflow Committer & PMC member

Twitter: @jarekpotiuk

Jarek Potiuk

Senior Software Engineer
in Google Cloud Composer

Mateusz Henc

Use cases

I want to run my dags
independently from each

others

I want different teams to
share Airflow infrastructure

I want to manage a single
Airflow installation

Multi-tenancy today ?

Is multi-tenancy possible today?

● It’s just assigning permissions in the UI, right?

○ Nope. UI is just a view on DAGs.

● I can just give access to sub-dirs to separate teams?

○ Good start, but no. Workers are shared between teams.

● But I can have cluster policies to prevent it?

○ Yeah. But tasks have access to the DB and can modify it!

��

Challenges

● Original Airflow model: “trust-everyone”
● Multiple-teams - multiple Airflow installations
● All dags in single physical location
● Direct database access
● No isolation between dags/tasks and Airflow code
● No fine-grained access to Airflow MetaData DB
● No fine-grained access to Secrets

Way forward

Path to Multi-tenancy

Duis mattis, nibh eu tempor pharetra, felis
ante pretium enim, et scelerisque ante
lorem convallis enim. Suspendisse lacinia
urna id mi malesuada, quis congue eros
vestibulum. Nulla facilisi.

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nulla vitae ligula lacus.
Suspendisse et leo ultrices, euismod massa
sit amet, volutpat quam. Nulla pretium
metus semper enim iaculis lacinia. Duis ac
nisi nec urna faucibus pulvinar. Aenean in
magna vitae massa eleifend venenatis id
eget diam. Integer non turpis justo.

Phasellus placerat, magna at sollicitudin
elementum, nulla diam fringilla lorem, a
faucibus justo mauris eget sapien. Nullam
quis lacus quis augue accumsan fringilla eu
at nisl. Maecenas imperdiet, diam sit amet
eleifend cursus, dui ligula blandit tellus, quis
porta neque lorem in ipsum. Sed justo
augue, imperdiet sed elit ut, placerat mattis
sapien.

2

No breaking changes

All features opt-in

Iterative

Each step is usable
solution

31

Gradual

Adding feature by feature

Open

There is room for follow-up
ideas

4

Principles

● Slow introduction - no big-bang
● Feature Flags
● Cooperation with many stakeholders

○ Google, Astronomer, AirBnB, Cloudera, Amazon
● Semi-regular meetings (Recordings, Minutes)

Concepts

Trusted vs untrusted components

Trusted

● Airflow community code execution
● No user plugins/pypi-packages
● No access to DAG files
● Direct access to MetaData DB

Untrusted

● User code execution
● Possible plugins/pypi-packages
● Access to DAGs storage
● No direct access to MetaData DB

Managed vs Standalone Airflow

Standalone Airflow

● Airflow Admin
○ Timetables
○ Triggers
○ Webserver Plugins
○ Runtime Plugins
○ Runtime Packages

● DAG authors
○ DAG code

Managed Airflow

● Service Provider
○ Timetables
○ Triggers
○ Webserver plugins

● Airflow Admin
○ Runtime Plugins
○ Runtime Packages

● DAG authors
○ DAG code

Various degrees of multi-tenancy

● Separate Dag Authors and Airflow Admins ✅
● Separate dependencies for different teams

● No direct MetaDB access for DAG authors

● Fine-grained secret access for DAGs/Tasks

● Standalone tasks with all resources needed

Airflow 2.2 architecture

Scheduler

Dag Processor

Workers

DB

Workers
Workers

Workers
DAGs

Webserver

Triggerer

Shared infrastructure

Single-tenant legacy: Airflow 2.2

Dag Processor

Workers
Workers

Workers
Workers

DAGs

Scheduler

Dag Processor

DB

Workers
Workers

DAGs

Webserver

Triggerer

Should be per-tenant

��
��

��

��

��

��

��

Dag Processor separation

Dag Processor Separation

Scheduler

Dag Processor

Scheduler

Dag Processor

Shared infrastructure

Single, separate tenant

Airflow 2.3: AIP-43 (partial) - scheduler code runtime separation

Scheduler

Dag Processor

Workers

DB

Workers
Workers

Workers
DAGs

Webserver

Code runtime
separation

Triggerer

��
��

��

��

��

����

Dag Processor Separation

● Dag Processor refactoring
○ Zombie detection moved to Scheduler Job

● Callbacks
○ Through database

● New configuration
○ [scheduler]standalone_dag_processor

● New CLI command
○ airflow dag-processor

● AIP-43

Dag Processor Separation

Future

Runtime isolation

Per team runtime isolation

● Complete AIP-43 + AIP-46 combined

○ Google + AirBnB

● Combine separate dag processors and Docker Runtime

● Docker Runtime allows for environment separation

● Same Docker Runtime shared between Processor and Worker

● Easily configurable per tenant

Shared infrastructure

Tenant 1

Airflow 2.?: AIP-43 + AIP-46: Tenant Runtime isolation

Scheduler

Dag Processor
Workers

DB

Workers
DAGs

Webserver

Tenant 2

Dag Processor
WorkersWorkers

DAGs

Triggerer

��
��

��

��

��

��

��

DB Isolation

Airflow Internal API

● No direct access to DB from Workers and Dag Processor

● Only certain operations allowed via Internal API

● Temporary authorization for the time of processing

● No fine-grained Meta Data DB access (yet)

● AIP-44 - Airflow Internal API

Shared infrastructure

Tenant 1

Airflow 2.?: AIP-44 - DB access isolation

Scheduler

Dag Processor
Workers

DB

Workers
DAGs

Webserver

Tenant 2

Dag Processor
WorkersWorkers

DAGs

Triggerer

Internal API

No direct DB access
No direct DB access

��

��

��

��

��

Status of AIP-44

● First pass of reviews passed. On hold due to many changes in 2.3

● RPC-like interface replacing current internal methods

● No duplication of code for local/remote:

○ Internal vs. RPC calls

○ POC in progress

● Authorization:

○ Temporary tokens generated by Scheduler/Processor

Fine-grained access

Fine-grained access to MetaData DB

● No AIP yet - discussions must happen

● Temporary tokens with selective access per task

● Only access resources that are needed

○ DAG/Task/DagRun/XCom

● Still no Secrets isolation separation

Fine-grained access to resources

● No AIP yet - discussions must happen

● Challenges:

○ Mapping DAGs/Tasks to secrets

○ Likely require changing DAG definition

○ Likely require adding Tenant entity in DB

○ Likely we can “embed” credentials in workload

Shared infrastructure

Tenant 1

Airflow 2.?: AIP-? - Fine grained access to resources

Scheduler

Dag Processor WorkersWorkers
DAGs

Webserver

Tenant 2
Dag Processor WorkersWorkers

DAGs

Fine-grained DAG
runtime access

Fine grained task
runtime access

��
DB

Triggerer

Internal API

Credentials

CredentialsCredentials

Credentials

Web Server
per-tenant access

Per Tenant Webserver Access to DAGs
● Possible but not part of Airflow as a product

○ Cloud Composer - custom approach

● No AIP yet - discussions must happen

● Challenges:

○ Mapping DAGs/Tasks to user groups

○ Permission management for task groups

○ Likely require changing DAG definition

○ Likely require adding Tenant entity in DB

Tenant 1

Airflow 2.?: AIP-? - Per-tenant Webserver access to DAGs

Dag Processor WorkersWorkers
DAGs

Tenant 2
Dag Processor Workers

DAGs Credentials

Credentials

Scheduler Webserver

Fine-grained DAG
runtime access

Fine grained task
runtime access

DB

Triggerer

Internal API

Workers

CredentialsCredentials

Credentials

👥 👥👥

Airflow 3.0+

Open questions
Airflow 3.0 and beyond

● Transition to isolation mode

● Replacement of DB queries

● Multi–tenancy flag or feature flags?

● Multi-tenancy by default ?

● No opting-out ?

Thank you !

Q&A

Survey! https://bit.ly/AirflowSurvey22

https://bit.ly/AirflowSurvey22

