
Airflow in the Cloud: Lessons from the field
Airflow Summit, May 2022

Rafal Biegacz (he/him)
Sr. Engineering Manager, Google
rbiegacz@

Filip Knapik
Group Product Manager, Google
FilipKnapik1@

Fill in Airflow Community Survey:
https://bit.ly/AirflowSurvey22

https://bit.ly/AirflowSurvey22

Rafal Biegacz

● Cloud Composer Sr. Eng Manager

● Has been working on Airflow for ~3 years

● Holds MSc degree in the field of Teleinformatics
from Gdansk University of Technology

● Delivers Google Cloud Platform and cloud
computing lectures to students of University of
Warsaw and Technical University of Warsaw

BIO

https://cloud.google.com/composer

Filip Knapik

● Cloud Composer Group Product Manager

● Working with Airflow for ~3 years

● 18+ years of IT management experience

● MSc in Computer Networks and Services at
AGH University of Science and Technology in
Cracow, Poland

BIO

http://cloud.google.com/composer

Super-quick intro on Composer

Cloud Composer

Cloud Composer

100% open source
compatible

Airflow and Composer

What is Composer used for?

BigQuery Data Fusion Dataflow DataprocStorage

Cloud Composer

100+ APIs
…

Orchestrate work across Google Cloud, external SaaS services and proprietary APIs

…

Cloud Composer as a managed Airflow

DAGs & Plugins
Cloud Storage

Composer 2

Compute layer
Kubernetes Engine

Airflow Database
Cloud SQL

SchedulersSchedulers

SchedulersSchedulersWorkersWorkers

au
to

sc
al

ed

Task queue

Airflow UI

Access Control
Cloud IAM

Logs
Cloud Logging

Metrics & Alerts
Cloud Monitoring

DAG UI
Cloud Composer

DAGs &
Plugins

Access
Control

Logs

Metrics
& Alerts

Airflow UI

Cloud Composer’s value

Simple
deployment

Robust
Monitoring &

Logging

Enterprise Security
Features

DAG code
portability

Technical
Support

Managed
infrastructure

Airflow IS AWESOME!

Airflow Community is at the heart of Airflow

Customers appreciate Airflow

● Customers value community contributions
● Airflow 2 is awesome
● Richness of Airflow operators
● Extensibility

New users
every day

Learning #1

The power of Airflow is in its extensibility

Off-the-shelf Airflow Providers don’t cover all needs

Customers orchestrate work in their own API’s through:
● Python Operator
● Bash Operator
● KubernetesPodOperator and GKEPodOperator
● Custom Operators/Sensors

More than 60% of tasks run within Composer are based on the above.

Extensibility of Airflow is the fundamental power of Airflow.
As a community, we need to keep investing in this area.

Learning #2

Less Airflow-savvy users start using
Airflow

“Just want to focus on
running my DAGs, not
Airflow management”

User quote: “I just want to run my DAG”

Some users assume that everything just works automatically.
Ideally, Airflow tunes itself, Airflow DB retention/pruning happens automatically

Additional quotes from users:
● I don’t want to actively manage Airflow environments
● I care about stability more than new Airflow features
● I don’t need to move to newer Airflow version. Why would I fix what’s not broken?

All “auto-healing” capabilities in Airflow are super important.
 Proper use of underlying infrastructure (e.g. Kubernetes) helps.

Great out-of-the-box experience is
important for new or less
Airflow-savvy users

…and they vary by version

…and some are interdependent

… current and deprecated
coexisting for some time

Airflow has 300+ parameters…

With great power comes great … complexity

● Airflow configurations are great for experts

● Most customers mis-configure Airflow

● Adjusting Celery, Worker and Scheduler params
requires experience & learning

Airflow configuration autotuning/recommender
 would be a massive benefit for less experienced users

source: https://giphy.com/

Learning #3

The better Airflow becomes, the higher
users’ expectations

“Nobody [in the organization]
has an incentive to keep
upgrading what’s working well”

Implications of growing maturity

Quality

Features

Stability

Maturity

Criticality of Airflow
workloads

Interest in
upgrades

Upgrades between Airflow versions as smooth as possible.
Ideally no or minimal changes to DAGs.

Deprecations… wrrr.

Users hardly read Release
Notes and they are not eager
to change their code to adjust.

Deprecations prevent new versions adoption

Challenging deprecations
● Operators
● Airflow configuration parameters
● Airflow connection names

Deprecation messages litter the logs

Airflow 1 vs 2 incompatibility holds customers in Airflow 1

Feature deprecations need to be smooth, especially
requiring DAG code changes

source: https://giphy.com/

Users don’t like retries

Retries take time and money

● Recommending DAG or task Retries doesn’t always work

● Tasks can
○ cost hundreds of $, ₹ , PLN , €
○ take hours
○ play important role in business processes

Need to aim to make Airflow fault-tolerant and reduce the risk of task retries
Users expectations is that DAGs executions in 100% successful.

Business impact

https://en.wikipedia.org/wiki/Euro_sign

Learning #4

DAG and User Isolation Wanted

User Isolation, User Code separation… Multi-tenancy

● Access Control in UI and Per-folder Role auto-registration are very popular.

● User code still can impact parsing and scheduling.
● User code still can mess with the content of the database.
● Users can step on each other toes (e.g. 2 different DAGs with the same name)

Better isolation between DAG Processor and Scheduler is needed.
AIP-43 DAG Processor separation and AIP-44 Airflow Internal API
can improve the separation significantly.

https://airflow.apache.org/docs/apache-airflow/stable/security/access-control.html
https://www.youtube.com/watch?v=E8ouMCCtq9g
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-43+DAG+Processor+separation
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-44+Airflow+Internal+API

Airflow is amazing!

It attracts new users every day and their satisfaction
continuously increases.

Customers’ critical business processes
rely more and more on Airflow.

As an Airflow Community, we should aim
to support Airflow’s flexibility and hide
the complexity (where possible)

Let’s keep the momentum of Airflow and work towards
○ Improved autohealing & fault tolerance
○ Simplified Airflow configuration
○ Feature deprecation control
○ DAG and User Isolation

Thank you!

Rafal Biegacz (he/him)
Sr. Engineering Manager, Google
rbiegacz@

Filip Knapik
Group Product Manager, Google
FilipKnapik1@

