
A startup's data journey
and its growing need for orchestration
Airflow Summit 2022

● 20+ years swimming in data @

● Started Apache Airflow at Airbnb in 2014

● Started Apache Superset at Airbnb in 2015

● Started Preset - The Apache Superset company in 2019

● The data journey

● Step by step

● Pain points

Preset’s Data
Journey

● The visualization layer for the modern data stack!

● We offer a freemium + commercial offering for “managed” Apache Superset

● A 3Y old startup, series B company, ~50M raised, about ~75 employees

● SaaS, PLG, freemium, “bottoms-up”, self-serve

● data-native!

!?

Phase 0 - stuff right out of the box

Pase 0.5 - some operational analytics
● Setup DataDog early-on

● Provided some product analytics by proxy

● Mostly downsides

○ Ephemeral

○ Not intended for business intelligence

○ Limited to internal systems

Beta launch -> Product analytics
● analytics events: looked into using BigQuery stream ingestion, but decided

to wire Superset’s events into Segment -> BigQuery - acts as a more solid

“transport layer”

● scrapes: had to build our own OLTP db -> BigQuery sync as we had unique

challenges related to multi-tenancy (thousands of virtual databases)

● control plane: copied the pattern we used for Superset

● computing engagement & growth metrics (SQL & dbt)

Customer Data
● A huge need to bring CRM and product data together!

● Hubspot (our CRM)

○ Fivetran

○ Hightouch (reverse ETL)

Marketing data
● Website traffic - using Segment on our Gatsby site

● SEO/SEM - the need for tracking a single fingerprint across the journey

Other data sources vital to Preset
● GitHub for velocity and community information

● Recurly for our revenue data

● Pendo for our onboarding form, guides, in-product survey, …

● Sparkpost for product email campaigns

● Shortcut as our Jira-like issue tracker

● Lever for our recruiting data

Pros

● simple -> stateless and infra-less (easy to setup & operate)

● incrementally adoptable - small data -> set up incremental load later…

● compatible / complementary with Airflow

Cons

● stateless (no logs!?)

● doesn’t work well with a functional approach

● No sensors (what did the data looked like when it ran!?)

Operational Creep

● Too many trains on their own schedule!

● Trains are leaving the station regardless of whether they are loaded or not

● No sensors!

● Dysfunctional data engineering

● The lazy approach

The case for Airflow
● Staying sane while data flow complexity grows

● Sensors waiting for conditions to be met before doing work

● Logs! Data Ops / rigor / lineage

● The growing need for little scripts that glue things together

● Enabling automating our first steps in ML / data science

A data team!
● Hired our first analytics engineer

● Hired our first data engineer early 2022

● Every team @ Preset is a data team

Thoughts about

Some closing statements

● data-native startups have access to world-class data infra through “Modern

Data Stack” services!

● services are reasonably priced (dirt cheap really!), and things that used to

be very hard are now pretty easy

● edge cases are common! Airflow still a great place to weave in custom

things where off-the-shelf comes short

● complexity compounds very quickly!

● with complexity comes the need for an orchestrator!

