
Automating Airflow Backfills
with Marquez

Willy Lulciuc | Airflow Summit 22’

Hey!
I’m Willy Lulciuc

Software Engineer, Astronomer
Co-creator, Marquez

Committer, OpenLineage
 @wslulciuc

AGENDA

02 Intro to OpenLineage

01 Backfills (naive)

03 Intro to Marquez
 04 Backfills (take 2)
 05 Future work

Let’s get
booking!

Location + floor01

Location + floor01
Open time slot02

Location + floor01
Open time slot02
Duration03

Location + floor01
Open time slot02
Duration03
Confirm04

Which location has
the most bookings?

Set[RoomBooking] LocationID

SELECT location,
 COUNT(*) AS bookings,
 booked_by
 FROM room_bookings
 GROUP BY bookings DESC
 LIMIT 1

… but, DAGs fail and backfills
are a thing

Backfilling
As your organization scales up, so will the amount of
data and number of internal data sources. As data
outages happen, they become more serious.
Backfilling refers to the process of retroactively
processing historical data. Having a central place to
examine and understand DAG dependencies will make
your organization more resilient to data outages.

DAG Failures
● Data quality

○ Data freshness (incomplete or missing data, etc)
○ Data schema change (column dropped, data type

changed)
● Bad code

○ DAG crashes
● DAG dependencies

○ Upstream/downstream DAG failures

Backfills (naive)01

Airflow backfill

 $ airflow backfill \
 --start-date <START_DATE> \
 --end-date <END_DATE> \
 <DAG_ID>

Airflow execution_date

execution_date: 2022-01-01

start_date: 2022-01-02

execution_date: 2022-01-02

start_date: 2022-01-03

24hrs 24hrs 24hrs

2022-01-01
YYYY-MM-DD

2022-01-02
YYYY-MM-DD

2022-01-03
YYYY-MM-DD

Data Quality Failures

Input
Dataset

Output
Dataset

Job

Retries!

Input
Dataset

Output
Dataset

Job

Let’s keep trying!

Upstream Dependency
Failures

Input
Dataset

Output
Dataset

Job

Oh!

Job

One Bad Datapoint

Output
Dataset

Job

Input
DatasetInput

DatasetInput
DatasetInput

Dataset

Bad Code Failures

Output
Dataset

JobInput
Dataset

Downstream Failures

Output
Dataset

JobInput
Dataset

Job

Backfilling is tough…
● How quickly can data quality issues be identified and

explored?
● What alerting rules should be in place to notify

downstream DAGs of possible upstream processing issues
or failures?

● What effects (if any) would upstream DAGs have on
downstream DAGS id dataset consumption was delayed?

… ugh, backfills shouldn’t be
this hard!

OpenLineage: Intro

Data Analysis
Tools Schedulers Data

Warehouse SQL Engines

OpenLineage: Intro

Data Analysis
Tools Schedulers Data

Warehouse SQL Engines

● A open standard with a specification for
collecting lineage metadata

● Focuses on job-level execution
○ Datasets
○ Jobs
○ Runs

● Event-based metadata collection
● Extensible model via facets

OpenLineage: Data model

RunStateUpdated

Run

Job

Dataset

RunFacet

JobFacet

DatasetFacetINPUT / OUTPUT

Data
Lineage

Data
Governance

Data
Discovery

Marquez

● Centralized metadata
management
○ Sources
○ Datasets
○ Jobs

● Features
○ Data governance
○ Data lineage
○ Data discovery +

exploration

Metadata Service

Marquez: Intro

Marquez

Core

Lineage

Search

REST API

ETL Batch Stream

Marquez: Data model

Job

Dataset Job Version

Run

*

1

*

1

*

1

1*

1*
Source

1 *

● MYSQL
● POSTGRESQL
● REDSHIFT
● SNOWFLAKE
● KAFKA
● S3

● BATCH
● STREAM
● SERVICE

Dataset Version

v4Dataset
v2

v4
v4

Job
v1

Dataset
v4

Job
v2

Marquez: Data model

● Debugging
○ What job version(s) produced and

consumed dataset version X?

● Backfilling
○ Full / incremental processing

Design benefits

Marquez: Lineage metadata collection

How is metadata collected?
● Push-based metadata

collection
● REST API
● OpenLineage integrations

○ Airflow
○ Spark
○ dbt

Marquez

Job

OpenLineage
Events

Workflows

O
pen

Lin
eage Lib

.
In

tegration

Marquez

R
ES

T
A

PI

Capturing lineage metadata with Marquez
using OpenLineage in a nutshell

Marquez: Lineage metadata collection

Job

Dataset Job
Version

Run
Dataset
Version

*
1

*
1

1*

1*
Source

1 *

*
1

+OpenLineage Airflow

Airflow

D
A

G

D
A

G

D
A

G

D
A

G
OpenLineage Lib.

● Metadata
○ Task lifecycle
○ Task parameters
○ Task runs linked to versioned code
○ Task inputs / outputs

● Lineage
○ Track inter-DAG dependencies

● Built-in
○ SQL parser
○ Link to code builder (GitHub)
○ Metadata extractors

OpenLineage: Airflow

OpenLineage support for Airflow

● Open source! 🥇
● Enables global task-level metadata collection
● Extends Airflow’s DAG class

from openlineage.airflow import DAG
from airflow.operators.postgres_operator import PostgresOperator

...

new_room_bookings.py

OpenLineage: Airflow

OpenLineage Airflow Lib.

airflow.operators.PostgresOperator

openlineage.extractors.PostgresExtractor

Extractor

Operator

Metadata

Airflow

OpenLineage
Airflow Lib.

Example

OpenLineage: Airflow

OpenLineage: Airflow

t1=PostgresOperator(
 task_id=’new_room_booking’,
 postgres_conn_id=’analyticsdb’,
 sql=’’’
 INSERT INTO room_bookings VALUES(%s, %s, %s)
 ’’’
 parameters=... # room booking
)

Operator Metadata

Source01
new_room_booking_dag.py

OpenLineage: Airflow

t1=PostgresOperator(
 task_id=’new_room_booking’,
 postgres_conn_id=’analyticsdb’,
 sql=’’’
 INSERT INTO room_bookings VALUES(%s, %s, %s)
 ’’’
 parameters=... # room booking
)

Operator Metadata

Source01

02 Dataset

new_room_booking_dag.py

OpenLineage: Airflow

t1=PostgresOperator(
 task_id=’new_room_booking’,
 postgres_conn_id=’analyticsdb’,
 sql=’’’
 INSERT INTO room_bookings VALUES(%s, %s, %s)
 ’’’
 parameters=... # room booking
)

Operator Metadata

02 Dataset

03 Job

new_room_booking_dag.py
Source01

OpenLineage: Airflow

new_room_bookings_dag.py top_room_bookings_dag.py

Managing inter-DAG dependencies

OpenLineage: Airflow

new_room_bookings_dag.py top_room_bookings_dag.py

Managing inter-DAG dependencies

b940314,1541624285,2

TSLOCATION ROOM

b648485,1541501885,9

b648485,1541710685,4

public.room_bookings

Backfills (take 2)04

Fail Collaboratively
● Global View

○ Lineage metadata allows teams to look at failures across the
organization, understanding the impact of the data outage

● Coordinate
○ Efforts aren’t duplicated

● Empower
○ Give teams the power to resolve data outages completely

Future work05

Roadmap
● Column-level lineage support
● Job hierarchy and grouping
● Flink integration

Future work

Thanks! <o/

Be cool, take the Airflow survey!
bit.ly/AirflowSurvey22

https://bit.ly/AirflowSurvey22

github.com/MarquezProject
@MarquezProject

 github.com/OpenLineage
@OpenLineage

Questions?

