Multiple ML Models For Multiple Clients

Steps For Scaling Up

March 2022
Agenda

01 Riskified

02 Single Model vs Multi Models Tradeoff

03 The ML Pipeline Solution

04 Riskified’s Trainer-as-a-Service : From Theory To Practice
About me

Ori Peri

➔ ML Engineer @Riskified
➔ MSc in SW & Information Systems Engineering @BGU
➔ BSc in Computer Science @BGU

ori.peri@riskified.com
Riskified by the Numbers

750+
Global team, nearly 50% in engineering & analytics

180+
Countries across the globe

50+
Publicly held companies among our clients

$89B
Online volume (GMV) reviewed in 2021

98%+
Client retention* for the past 2 years

*Annual dollar retention
As of March 2022
Training in Riskified

14 Days Manual Pipeline

25+ Production Models

>1 Year To Retrain All Models
The Tradeoff

- Single Model
- Multiple Models
Single Model

Pros:
- Small engineering effort
- Larger dataset
- Cold start handling

Cons:
- Lower performance
- Differences in data distribution
- Monitoring different KPIs
Multiple Models

Pros:
- Better performance
- Fitting customers’ KPI

Cons:
- Costs
- Cold start
- Small customers
- Heavy engineering effort
The ML Pipeline Solution
MLOps Levels

Quick Overview

Level 0 - No MLOps
- Manual training, validation
- 0 tracking of training and performance

Level 1 - Automated Training & Deployment
- Auto ML pipeline
- Centralized tracking
- Easy to reproduce

Level 2 - Full MLOps
- Rapid exploration of features, models
- CI/CD/CT
The ML Pipeline’s BBs

- Containerised & Composable BBs
The ML Pipeline

- Same pipeline is used for research (offline) and production (online)
Features Store

- Features definition standardization
- Offline & Online consistency

Data Validation Data Preparation Model Training Model Evaluation Model Validation

Feature Store

Experiments Production
Experiments Manager

- Record execution info & artifacts
- Visibility of training & model plots
- Enable easy comparisons
Model Registry

- Manage customer’s SOTA models & versions
- Retrain & online serving handoff
Event Triggers

- Data drift - features distributions
- Model performance degradation
- New data - trigger after X amount of new data/time passed
Workflow Orchestrator

- Reproducibility
- Debug & rerun failures
- Execution info - dataset, features, code version, etc.
The ML Pipeline - All Together

Model Life Cycle:

- Model Monitoring ->
- Retrain Decision ->
- Data Preparation ->
- Train ->
- Inference ->
- Validation ->
- Deploy

Source - https://towardsdatascience.com/mlops-level-1-continuous-training
Riskified’s
Trainer-as-a-Service: From Theory To Practice
Riskified’s Trainer-as-a-Service

Goals ➔ Difficulties ➔ Solutions

- Data Validation
- Data Preparation
- Model Training
- Model Evaluation
- Model Validation

ML Engineering ➔ Data science ➔ Operations
Riskified’s Trainer-as-a-Service

Goals

01 Support Multiple Code Languages

02 Reduce Researchers SW Effort

03 On-Demand BB Replacement

04 Allow Parallel Development On The Same Pipeline
Riskified’s Trainer-as-a-Service

Pipeline Orchestrator:
- Airflow workflow is a DAG above k8s consists of multiple tasks
Riskified’s Trainer-as-a-Service

Goals

01. Support Multiple Code Languages

02. Reduce Researchers SW Effort

03. On-Demand BB Replacement

04. Allow Parallel Development On The Same Pipeline
Riskified’s Trainer-as-a-Service

- Each task is a containerized code running within a given Docker image
- Enable R/Python/Scala components
Riskified’s Trainer-as-a-Service

Goals

01 Support Multiple Code Languages

02 Reduce Researchers SW Effort

03 On-Demand BB Replacement

04 Allow Parallel Development On The Same Pipeline
Riskified’s Trainer-as-a-Service

- Tasks are testable with a defined API
- Analytical + SW tests in pipeline
- Reduce dev effort for data scientists

Diagram:
- Train
 - Data schema skews
 - Features validity
 - Label distribution
 - Model convergence
 - Model performance evaluation
 - Model feature importance
Riskified’s Trainer-as-a-Service

Goals

01 Support Multiple Code Languages

02 Reduce Researchers SW Effort

03 On-Demand BB Replacement

04 Allow Parallel Development On The Same Pipeline
Riskified’s Trainer-as-a-Service

- Framework for easy insertion of new code components into pipeline
- Facilitate images replacement, integration and testing
Riskified’s Trainer-as-a-Service

Goals

01 Support Multiple Code Languages

02 Reduce Researchers SW Effort

03 On-Demand BB Replacement

04 Allow Parallel Development On The Same Pipeline
Riskified’s Trainer-as-a-Service

The Goal:
Enable parallel bug fixing + features development while maintaining code versions

The problem:
Multiple developers are using the same pipeline for testing

The solution:
Keep isolated environments within the same pipeline
Riskified’s Trainer-as-a-Service

The How:
- Create DAGs supporting image as an input
- Create image as part of developer branch CI
- Execute the DAG with a given image
Riskified’s Trainer-as-a-Service

A Real as-a-Service

- Clear API
- Easy Triggering Based On Json/YAML File
- Flexible Pipeline - Choose What To Run

Diagram:

```
run_me_0 --> run_after_loop --> run_this_last
run_me_1 --> run_after_loop
run_me_2 --> also_run_this
```
Riskified’s Trainer-as-a-Service

A Real as-a-Service

- Clear API
- Easy Triggering Based On Json/YAML File
- Flexible Pipeline - Choose What To Run

Data Scientist

Run!

run_me_0

run_me_1

run_after_loop

run_this_last

run_me_2

also_run_this
Riskified’s
Trainer-as-a-Service

A Real as-a-Service

- Clear API
- Easy Triggering Based On Json/YAML File
- Flexible Pipeline - Choose What To Run
Summary

14 Days → 1 Day
We decreased significantly Riskified's operational training effort

Step-by-step
Implementing an automated ML pipeline consists of many steps
Gradually implement and automate towards MLOps level 2

Tech Stack

- ECR
- Vault
- Airflow
- Docker
- k8s
- CircleCI
- MLFlow
- Spark
Thank you for your time!
Q&A