

Well-Architected Workflows -
Resiliency
Uma Ramadoss
Sr. Specialist Solutions Architect, Integration
Amazon Web Services

What is Resiliency?
Capability of the workload to recover from infrastructure or service
disruptions

Reliability

Ø Ability of the workload to perform its
intended function correctly and
consistently.

Ø Reliability is impacted by operational
practices, performance efficiency, security
etc. including Resiliency

Resiliency

Ø Ability of the system to recover from
failures

Ø Resiliency is the component of Reliability

What are Resilient workflows?
Redriveable workflows with retriable atomic tasks.

Build

Fail
Analyze

causes of
failure

Change
practices

“Everything fails, all the time.”
Werner Vogels
CTO, amazon.com

Build

Fail
Analyze

causes of
failure

Change
practices

Build

Fail
Analyze

causes of
failure

Change
practices

Resiliency in Airflow Architecture

Understanding Main Components of Apache Airflow

Scheduler Worker

Web Server Meta Database

Production suitable implementation

Meta
data
DB

worker
worker

worker
worker

Web
Server

Workflow
files

Scheduler

Executor Scheduler

Executor

Queue

Connection poolingAuthN/
AuthZ Observability

Resilient Design Principles

All or None - Atomicity

Data
aggregationExtraction Update

external API

Extract data from sources
Store metadata
Process file by file type

All or None - Atomicity

Data
aggregation

Choose
filetype

Update
external API

Process image
file

Process csv
file

Extract
data1

Store
metadata

Extract
data2

All or None - Atomicity

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Get API
Key

Update
API

This is an atomic operation

Extract
data1

Extract
data2

All or None - Atomicity

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

GetAPIKey
and Update
external API

Extract
data1

Extract
data2

Store in
Database

Make failures safe - Idempotency

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Extract
data1

Extract
data2

Store in
Database

INSERT INTO
TABLE…

Make failures safe - Idempotency

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Extract
data1

Extract
data2

Store in
Database

UPSERT

Make failures safe - Idempotency

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Extract
data1

Extract
data2

Make failures safe – Idempotency – Redshift UPSERT

Staging
Table

Destination
Table

task_transfer_s3_to_redshift =
S3ToRedshiftOperator(

s3_bucket=S3_BUCKET_NAME,
s3_key=S3_KEY,
schema='PUBLIC’,
table=REDSHIFT_TABLE,
copy_options=['csv’],
method=‘UPSERT’,
task_id='transfer_s3_to_redshift’,

)

Store in
Database

UPSERT /
STAGING TABLE/

VALIDATE EXISTENCE

Make failures safe - Idempotency

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Extract
data1

Extract
data2

Call external
Service

Make failures safe - Idempotency

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Extract
data1

Extract
data2

Call external
Service if not
called before

STORE STATE

Make failures safe - Idempotency

Data
aggregation

Choose
filetype

Process
image file

Process
csv file

Store
metadata

Extract
data1

Extract
data2

Protect downstream – retries, backoff

args=
{

'depends_on_past': False,
'email': ['airflow@example.com’],
'email_on_failure’: True,
'email_on_retry': False,
'retries’: 3,
'retry_delay': timedelta(seconds=5),
‘retry_exponential_backoff’: True

}

Exponential backoff
None

Competing clients

C
al

ls

Protect downstream – max active runs

Backfill
Start date

Dag
Start date

Current
date

Protect downstream – Preemptive load shedding

• Airflow pools can be used to limit the execution
parallelism on arbitrary sets of tasks

Typically this is done to limit downstream
impact, for example putting all database
tasks in an “RDS” pool that has a limit
based upon the connection limit of the DB

https://airflow.apache.org/docs/apache-airflow/stable/concepts/pools.html

Fail fast and fail forward – SLA and Timeout

Ø Leverage SLA and sla_miss_callback for
awareness

Ø Use execution timeout for cancellation of tasks

Ø Raise AirflowSkipException,
AirflowFailException to fail fast on obvious
errors

Ø Checkpoint/validate data

@task(sla=timedelta(seconds=60),
execution_timeout=timedelta(seconds=70)

def long_running_task():
blah = call_external_service()
if blah == “foo”:

raise AirflowSkipException
…..

Validate_data = SQLCheckOperator
(task_id=validate,…)

Resiliency Design Principles – Recap

Ø All or None - Atomicity

Ø Make failures safe – Idempotency

Ø Protect Downstream

Ø Fail fast and fail forward

Some best practice implementations

Use Airflow as an orchestration tool

Ø Externalize compute/memory-intensive
work to purpose built services.

Ø Leverage community offered operators.

Load
Snowflake

Aggregate
Kubernetes

Extract

Transform

Kubernetes

Operation as code & small reversible changes

Ø Add controls to verify integrity, scope, and
usage of DAGs before deploying

Ø Test locally for faster feedback cycle

Ø Update plugins and requirements
programmatically

B
u
i
l
d

Source
Control

Local dev
test

Sanity
check

Unit test

Build/plugins

Create
environment[first

time]

Deploy/Update
env if needed

P
i
p
e
l
i
n
e

Airflow local
docker image

Run Airflow
docker image

Dagbag.import_errors
Dagbag parse time

metric

Monitoring Workflow

Ø Build dashboards with relevant
metrics like parse time, scheduling
delays, queued/running tasks etc

Ø Send notification when thresholds
are exceeded.

Ø Leverage dashboards like Landing
times, Gantt chart to troubleshoot
performance issues

Testing in Airflow – Medium article

https://bit.ly/3w0PpeA

Data validation

https://www.youtube.com/watch?v=6ib2gH4A0rI

Airflow best practices

https://bit.ly/3LY1Hdh

Q/A

Thank you!
https://www.linkedin.com/in/umamaheswari-r-96578910/

