
Airflow in an
On-premise Data Mesh
Setup

Speaker
Jorrick Sleijster
Data Engineer
Data Platform Development
Tennis & Padel tennis

ACME Clothing

ACME FootwareACME Footware …

Adyen
We provide a single payment platform
globally to accept payments and grow
revenue online, on mobile, and at the point of
sale

Fully on-premise
We have all servers in-
house. We manage
everything from hardware to
software. Different clusters
per env: beta, test and live.

Weekly releases
Each week we start with a
new release on beta. Two
days later deployed to test,
and finally a week later to
live.

Teams / Streams
We have 20+ streams and
100+ data scientists on the
big data platform. Streams
are responsible for their own
DAGs.

The Workflow of
the Big Data Platform

Airfl

Airflow Cluster Setup
at Adyen

Celery workers Yarn Queue Postgres DB

Models, views, database listeners
 extensions

Data mesh

Domain Database

Product #3

Domain Database

Domain Database

Domain Database

Domain Database

Product #1

Tooling #1

Product #5

Product #4

Domain Database

Product #2

Why Data Mesh
• What is a Data Mesh?

• Monolithic data infrastructure
• Distributed domains
• Domain responsible for their own ETLs &

data

• Product teams(domains) with a clear focus
• Front-enders, back-enders, data scientists 

• No central ETL team

• Self service

Data Mesh Teams
• Product teams

• Tooling teams

• Infrastructure teams

Data mesh

Domain Database

Product #3

Domain Database

Domain Database

Domain Database

Domain Database

Domain Database

Product #1

Tooling #1

Product #2

Product #5

Product #4

Creating a (new)
Data Pipeline
• Create an Airflow DAG
• Create the ETL code  

starts

Identity Risk

KYC

Acquiring

Creating a (new)
Data Pipeline
• Create an Airflow DAG
• Create the ETL code  

• We need to:
• Define the schema
• Have enough resources for the ETL
• Possibly handle updates of the schema
• Retention, we don’t have infinite storage
• Remove the table
• Don’t want to (accidentally?) modify other

teams resources.

starts

Identity Risk

KYC

Acquiring

How can we enable
schema evolution?

Table
Schemas

How can we handle
data outgrowing the
predefined ETL
resources?

Tuning
Resources

How can we save
HDFS from being
filled with data we
don’t need
anymore?

Retention
Period

How can we give
users access to only
the parts that they
need?

User
Permissions

 Table Schemas
• We are managing an ETL pipeline

• How & where do we define the schema?
• How do we update the schema?
• How do we delete tables we no longer need?

Table Schemas
Library
• Each domain has their own database. 

• Each database has multiple scopes:
• pii - Requires white-listed access.
• private - Access by domain members only.
• public - Access by everyone. 

• Each database scope can have multiple tables. 

• Each table has at least one change file.  

• Change types: new, (in)compatible, remove

Tool to create schemas from a Spark DataFrame.

Process Flow

Update the schema file (.ddl)

Introduce the schema change file (.ddl)

Create an MR (merge request)

Teammate reviews and approves MR

MR is merged

Process Flow

Update the schema file (.ddl)

Introduce the schema change file (.ddl)

Create an MR (merge request)

Teammate reviews and approves MR

MR is merged

Release a new version on the cluster

Duty rolls out all schema change files for release

(Optional) User can also perform ad-hoc table
changes like redefining the table with the latest
schema.

not-so-live demo

 Tuning
Resources
• As we are on-premise, we have finite resources
• We hardcode the resources in our code base
• Now imagine:

• A DAG that has been running for 100 days
• On day 101 you get error code 143
• What do you do?

The Usual Workflow
• You google the issue  

• Solution: Set a higher Spark driver and/or
worker memory limit 

The Usual Workflow
• You google the issue  

• Solution: Set a higher Spark driver and/or
worker memory limit 

• But we hardcoded our resources in the code
base, so that would require:
• Create an MR
• Request for an approval
• Creating an official patch request
• Request for an approval
• Patching  

• How can we prevent patching?

not-so-live demo

 Retention Period
• As we are on-premise, we have finite storage.
• If we are close to storage limits, there are two

options:
• Buy more servers
• Get rid of some of our data  

• We should prevent getting close to the limit

Governance library
• Each stream has a Stream file in this library.
• They define all their tables there and their corresponding retention period.
• Disclaimer: This is much more complex when you work with tables that are not partitioned by date

 User Permissions
• We want to empower the streams so it truly

becomes self-service
• Yet, they should only be able to modify their

own resources.

DAGs

r Spark resources

r Team tables

r Custom views

User Groups
• We always have one on-duty Admin  

• For teams we have two access groups:
• Stream admin
• Standard user

• Team admins are able to:
• Manage all the DAGs of the teams
• Manage all the tables of their database
• Manage the Spark resources of their tasks

Admin

Stream admin

Users

Flask Appbuilder 
Permissions
• Why are you talking about Flask Appbuilder?

• In terms of permissions on these views:
• Each DAG has two POVs:

• my_dag.can_read
• my_dag.can_edit 

• Each function in a view has a POV:
• spark_configuration.can_add
• spark_configuration.can_edit 

• For roles we create:
• One basic role for all users
• One role for each stream admin group

 Base

View

Permission on view

 Permission on view
 Permission on view

 Permission on view

Role

Users

Role
Role

Role

We Implemented
• On each release, all permissions per role are

updated.  

• Created decorators to indicate who has access. 

• Validators that raise exceptions when someone
tries to modify a task that it has no access on.

• Modified our views to only show runnable parts.

Admin

Stream admin

Users

not-so-live demo

not-so-live demo

Mapping Users to
Roles
• Now that we have the roles defined, this is the

final thing left to do.  

• Security team requires us to use LDAP for
managing the roles. 

• Service that runs each hour.

How one can enable
schema evolution
over time and
abstract away
complexities

Table
Schemas

Preventing patches
for data overflowing
its ETL resource
limits

Tuning
Resources

Work with limited
storage

Retention
Period

Each domain has
their own database.

User
Permissions

Wrap up

Before I forget…

NL - Amsterdam  
Head office

US - Chicago 
Tech hub

Spain - Madrid 
Tech hub

Thank you

Slides for questions

Code Example: How we Define Permissions

Code example: Implementation of
Decorators

Operations on Tables
For any operation you wish to perform on a table, you can categorise them in one (or multiple) of these 5
operations: 
 
 
 
 
 
 
 
 
 
 
 
 

NEW COMPATIBLE INCOMPATIBLE REMOVE MOVE

Defines hive table
definition
Delete hive table
definition

Delete table data

MSCK Repair

