
Implementing 
Event-Based DAGs 
with Airflow



Kenten Danas

Lead Developer Advocate at Astronomer

2

My Background

● Data Engineering consultant
● Field Engineer at Astronomer
● Lead Developer Advocate at 

Astronomer
● All of these roles have been (at 

least partially) about helping 
people adopt Airflow



Agenda

3

- The “What?” and “Why?” of event-based triggering
- Methods for implementation

- Operators
- Sensors
- Deferrable Operators
- The API

- Looking forward



What is “event-based triggering”?

4

Time-based scheduling Event-based triggering



Can You Do That with Airflow?

Of course! Airflow is not “fancy CRON” - 
it’s a fully functional orchestrator

Its job is to manage the running of your tasks - 
and not all tasks need to run on a schedule

All solutions presented today are based on fully 
supported Airflow features



Why Event-Based Triggering?

Running DAGs on an ad-hoc basis can be helpful for many applications.

At Astronomer, we’ve seen use cases like:

6

Your website has a 
form page for 
potential customers 
to fill out. After the 
form is submitted, 
you have a DAG that 
processes the data.

You want the data 
ASAP, and customers 
don’t fill out forms on 
schedules.

Your company’s data 
ecosystem includes 
many AWS services, 
and Airflow for 
orchestration. 

When a particular 
AWS state is reached, 
you run a lambda 
function which 
triggers your DAG.

Your team uses 
Airflow for ML 
orchestration, and 
one DAG generates 
reports based on 
completed models.

Model training time 
varies based on the 
data, so the reporting 
DAG can’t always run 
at the same time.



So How Can I Make My DAGs 
Event-Based?



TriggerDagRunOperator



TriggerDagRun:

For when the 
trigger event 
comes from 
another DAG in 
the same 
environment

How to Implement

Relevant Use Cases

- Cross-DAG dependencies
- Reporting DAG should only run after data 

ML training DAG has completed
- A task depends on the results of another 

task, but for a different execution date 



Pros

● Easy to implement

● Wait_for_completion param gives 
you options for complex DAG 
dependencies

Cons

● Both controller and triggered DAGs 
must be in the same Airflow 
environment

TriggerDagRunOperator



Sensors



Sensors:

For when you’re 
not quite sure of 
the right time 

How to Implement

Relevant Use Cases

- Process data only after it has arrived in S3, GCS, etc.
- Run your DAG after an external service has 

completed, e.g. Azure Data Factory, SageMaker, dbt 
Cloud job run

- When you know generally when something should 
run, but want to wait for the exact right time



Pros

● Effectively just another operator 
in your DAG

● Highly use-case specific

Cons

● Once the sensor’s event is 
received, it won’t run again for 
that DAG run

● Long-running sensors can incur 
high resource costs

● A sensor might not exist for your 
particular use case

Sensors



Deferrable Operators



Deferrable 
Operators:

For when sensors 
are ideal but the 
waiting is 
expensive

How to Implement

Relevant Use Cases

- Whenever you would use a sensor, but want to 
save on compute



Pros

● Major compute savings over 
traditional sensors; helps with 
both scalability and cost

● Only updates needed to DAGs 
are import paths

Cons

● Must have a deferrable 
operator/sensor written, unless 
you want to write your own

● Must have a triggerer running

● Not the best for truly ad-hoc

Deferrable Operators



Airflow API



The API:

For when the 
trigger event is 
truly random

How to Implement

Relevant Use Cases

- Trigger a DAG when someone fills in a website 
form

- Trigger a DAG when an analyst runs a query
- Trigger a DAG when an external service 

completes 



Pros

● Trigger any time, from anywhere. 
The best way to implement truly 
ad-hoc triggering

● Fully stable REST API with 
Airflow 2

Cons

● Request only triggers the DAG, it 
doesn’t wait for it to complete or 
retrieve a status (although other 
requests can)

● Requires configuring API 
authentication before using; 
default is to deny all requests

Airflow API



Looking Forward



Future Triggerer Features



AIP 48: Data Driven Scheduling

Goal: 

Enable the triggering of DAGs based on dataset 
updates



Tell Airflow What You Think!

Take the annual Airflow User Survey 
(open until June 3rd)

https://bit.ly/AirflowSurvey22



Thank You!


