
Cloud Composer
Airflow Summit 2022
Workshop
May 27, 2022

Before we begin - download slides from
https://bit.ly/composer-workshop-2022-airflow-summit

https://bit.ly/composer-workshop-2022-airflow-summit

Table of contents

Agenda

Introduction to Cloud Composer

Setting up

Implementation of DAGs

DAG troubleshooting on Cloud Composer

01

02

03

04

05

Hi! It's nice to meet you!

Bartosz Jankiewicz
Engineering Manager,

Warsaw

Filip Knapik
Group Product

Manager, Warsaw

Przemek Więch
Software Engineer,

Warsaw

Leah Cole
Developer Relations

Engineer, NYC

Agenda
Of workshop

01

Agenda

Setting up Cloud Composer
● Setting up
● Architecture overview
● The first DAG running

DAG Troubleshooting
● Autoscaling showcase
● Scheduling too fast
● Permissions

troubleshooting
● Notifications on DAG

failure
● Retries

Implementation of DAGs.
● DAG development use

case in Google Cloud
Platform

● Data Analytics use case

1h 1h 1h

Introduction to
Cloud Composer

02

Create a Google Cloud
account
https://cloud.google.com/

Troubleshooting: https://support.google.com/accounts/answer/27441

https://cloud.google.com/
https://cloud.google.com/
https://support.google.com/accounts/answer/27441

Create Google Cloud account associated
with your email

Update your information

Redeem your voucher

Prerequisite: Redeeming a voucher assumes that you have: a Google Account and you set up your first GCP project
with a billing account.

● Acquire a GCP Voucher that you received via email
(if you didn’t receive the email then please connect to your workshop instructor).

● Follow the link: https://cloud.google.com/redeem#<YOUR VOUCHER>

● The following screen should be presented to you.
Press “Continue” button.

● The following screen should be presented to you.
Press “REDEEM” button.

https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/redeem#

Enable Cloud Composer API

https://cloud.google.com/composer/docs/composer-2/enable-comp

oser-service#enable-api

https://cloud.google.com/composer/docs/composer-2/enable-composer-service#enable-api
https://cloud.google.com/composer/docs/composer-2/enable-composer-service#enable-api

Setting up
Cloud Composer

03

GCP Projects used during Workshop
During this workshop you will be using two types of GCP projects:

● Main activities/exercises will be done in composer-workshop-X projects.
These projects were pre-set up for you.
Each of you should have access to one composer-workshop project
These projects will be deleted after the workshop.

● As part of this workshop you will receive a GCP credits voucher worth $300.
To be able to redeem the credits, in a addition to active Google Account you will need to set up your
GCP project and associate it with an active billing account.
This project is owned by you. You can use it after the workshop for as long as you like.
Workshop’s GCP credits are valid for 1 year since activation.

https://cloud.google.com/billing/docs/how-to/manage-billing-account

Creating Cloud Composer

1. Create service account.

a. Goto IAM -> Service Accounts

b. Click + CREATE SERVICE ACCOUNT on top of the

page

c. Add Composer worker permission to the account.

Creating Cloud Composer

2. When creating environment for the first time grant

permissions to Composer product service account.

Creating Cloud Composer

3. In the Google Cloud console, go to the Create environment

page for Cloud Composer 2.

4. In the Name field, enter a name for your environment.
The environment name is used to create subcomponents for the
environment, so you must provide a name that is also valid as a Cloud Storage
bucket name.

5. In the Location drop-down list, choose a location for your

environment.
A location is the region where the environment's GKE cluster is located.

https://console.cloud.google.com/composer/environments/create-composer-2
https://console.cloud.google.com/composer/environments/create-composer-2
https://cloud.google.com/storage/docs/naming-buckets#requirements

Cloud Composer in a nutshell

BigQuery Data Fusion Dataflow DataprocStorage

Cloud Composer

100+ APIs …

Orchestrate work across Google Cloud, external SaaS services and proprietary APIs

…

Fully managed Apache Airflow environments

Cloud Composer

Cloud Composer

Cloud Composer benefits

Simple
deployment

Robust
Monitoring &

Logging

Enterprise
Security Features

DAG code
portability

Technical
Support

Managed
infrastructure

Composer 2 Autoscaling

The challenge

● Sizing environments for variable workloads
● Task failures due to capacity constraints
● Cost control

Efficiency, Scalability, and Simplicity

Autoscaling, and usage-based pricing optimizes costs.

Airflow queue
Task 1 Task 2 Task 3 Task 4 Task 5 ...

Autoscaler

Worker 1 Worker 2 Worker 3

add/remove

Proprietary + Confidential

Composer versions

Composer 1 Composer 2

Supported Airflow versions Airflow 1.10.* and 2.* Airflow 2.*

Cluster GKE Standard GKE Autopilot

Autoscaled Workers No Yes

Pricing model Composer 1 pricing + GKE Pricing Composer 2 pricing

Private IP Networks VPC Peering Private Service Connect
VPC Peering

Restore from Snapshots
(e.g. for Disaster Recovery)

No Yes

Web Server Plugins Not supported with DAG Serialization Supported

More details:
https://cloud.google.com/composer/docs/concepts/versioning/composer-versioning-overview#major-versions

https://cloud.google.com/composer/docs/concepts/architecture#cluster
https://cloud.google.com/composer/pricing#sku-composer-1
https://cloud.google.com/kubernetes-engine/pricing#standard_mode
https://cloud.google.com/composer/pricing#sku-composer-2
https://cloud.google.com/composer/docs/concepts/versioning/composer-versioning-overview#major-versions

Cloud Composer 2 architecture

Cloud Composer 2 interacts with the following services:

● CloudSQL - running Airflow metadata storage

● Cloud Storage - user uploaded content (DAGs, user data)

● Kubernetes - runs Scheduler(s), WebServer, Redis queue,

SQL proxy and Airflow workloads

● Cloud Logging - stores and indexes components logs

● Cloud Monitoring - searchable Cloud Composer metrics

… and many more that we are managing for you.

https://cloud.google.com/composer/docs/composer-2/environment-architecture#public-ip
https://cloud.google.com/composer/docs/composer-2/environment-architecture#public-ip

Implementation
of DAGs

04

Quick DAG refresher

Image source:
https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html

● A directed graph with no detected cycles

● In Airflow - collection of tasks organized

with their relationships and their schedule

● Made up of:

○ Operators

○ Sensors

○ TaskFlow

https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html

"""An example DAG demonstrating simple Apache Airflow operators."""

import datetime

from airflow import models
from airflow.operators import bash_operator
from airflow.operators import python_operator

default_dag_args = {
 'start_date': datetime.datetime(2022, 5, 24),
}

with models.DAG(
 'composer_sample_simple_greeting',
 schedule_interval=datetime.timedelta(days=1),
 default_args=default_dag_args) as dag:

 def greeting():
 import logging
 logging.info('Hello World!')

 hello_python = python_operator.PythonOperator(
 task_id='hello',
 python_callable=greeting)

 goodbye_bash = bash_operator.BashOperator(
 task_id='bye',
 bash_command='echo Goodbye.')

 hello_python >> goodbye_bash

Individual Exercise: Upload a DAG to
Composer

1. Open the DAG using the VSCode GitHub editor

2. Download the DAG locally by right clicking the filename

and selecting "Download"

3. Use the Console to add your DAG to your environment

4. View your DAG in the Airflow UI

5. See that the DAG runs automatically

https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/airflow_summit/composer/workflows/simple.py
https://cloud.google.com/composer/docs/composer-2/manage-dags#console
https://cloud.google.com/composer/docs/composer-2/access-airflow-web-interface

Cloud Composer UI

Composer UI navigation

Environment actions
barDetail views

Notifications

Monitoring

Monitoring

Exercise:

1. Verify memory consumption of the Scheduler

2. Find the number of active workers

3. Find the CPU consumption of SQL database

Logs

Logs

Exercise:

1. Find logs of Webserver

2. Find logs of Scheduler

3. Find if there are any errors reported in Workers logs

DAG UI

Exercise:
1. Navigate to the DAG you have uploaded recently
2. Find logs of the tasks for the most recent run of the DAG
3. Verify if all the tasks executed successfully

Configuration management

Please note: All configuration management operations are taking up to

several minutes to execute (depending on the operation type, e.g. PYPI

installation can take 6+ minutes)

Environment configuration

Airflow configuration overrides

Please take note of blocked configurations:
https://cloud.google.com/composer/docs/concepts/airflow-configurations

https://cloud.google.com/composer/docs/concepts/airflow-configurations

Environment variables

Please mind reserved variables:
https://cloud.google.com/composer/docs/how-to/managing/environment-variables#reserved_variables

https://cloud.google.com/composer/docs/how-to/managing/environment-variables#reserved_variables

Labels

PyPI packages

CICD + DAGs

CICD + DAGs

● Prerequisites
○ Cloud Composer environment created or available
○ GitHub account has been created

● Instructions
○ Fork Github repository - https://bit.ly/cicd-sample-repo
○ Make a branch using VSCode in your fork (https://github.dev/{YOUR_GIT_NAME}/composer-workshop-cicd)
○ Work on this tutorial - https://bit.ly/composer-cicd-tutorial

■ SKIP Before you Begin section
■ In "Prepare your environment" SKIP "Add unit tests" (they already exist)
■ When it says "Create a file" don't - instead just open the file in VSCode to look at it
■ Skip any steps to "add gcloud" to your environment
■ SKIP THE CLEANUP STEPS

Group Exercise: CICD + DAGs

https://github.com/leahecole/composer-workshop-cicd
https://bit.ly/cicd-sample-repo
https://cloud.google.com/composer/docs/dag-cicd-integration-guide
https://bit.ly/composer-cicd-tutorial

Data Analytics DAG

Data Analytics DAG

BigQuery - Serverless, highly scalable, and cost-effective multicloud
data warehouse designed for business agility

Dataproc Serverless - Run Spark batch workloads on a managed
compute infrastructure, autoscaling resources as needed

Cloud Storage - Object storage for companies of all sizes. Store any
amount of data. Retrieve it as often as you’d like.

Cloud Composer - Fully managed workflow orchestration service
built on Apache Airflow.

Data Analytics DAG

● Federal holidays data
● NOAA dataset

How warm was it in Chicago on Thanksgiving for
the past 25 years?

https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/data-science-onramp/data-ingestion#holidaycsv-data
https://console.cloud.google.com/marketplace/product/noaa-public/ghcn-d

Data analytics workflow

Data analytics workflow - exploring the
DAG

Exploring the DAG

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/main/composer/2022_airflow_summit/data_analytics_dag.py

Group Exercise: Data Analytics DAG

1. Create an empty BigQuery dataset using the Cloud Console called holiday_weather
in the US region

2. Create a new Cloud Storage bucket in the same region as your dataset using the Cloud
Console -

3. Enable the Dataproc API
4. Add the following permissions to the Service Account for your Composer

environment: BigQuery User, BigQuery Data Owner, Service Account User, Dataproc
Editor, Dataproc Worker

5. Enable private Google access on the default subnet (requirement for Dataproc
Serverless)

a. Open Cloud Shell
b. Run the following command

gcloud compute networks subnets update default \
--region=us-central1 \
--enable-private-ip-google-access

https://cloud.google.com/bigquery/docs/datasets#create-dataset
https://cloud.google.com/storage/docs/creating-buckets
https://console.cloud.google.com/flows/enableapi?apiid=dataproc&_ga=2.204520339.2079324408.1652899305-1991828692.1652899254
https://cloud.google.com/iam/docs/granting-changing-revoking-access#grant-single-role
https://console.cloud.google.com/home/dashboard?cloudshell=true&_ga=2.177789734.2079324408.1652899305-1991828692.1652899254

Group Exercise: Data Analytics DAG

1. Download data_analytics_process.py - this is the Dataproc PySpark file. Add it to your
bucket from step 2 of the previous slide.

2. Download and add holidays.csv to that same bucket
3. Download the dag file - add it to the dags/ directory of your fork from the CICD tutorial

by dragging it into the VSCode online UI
4. Use the Airflow UI to add variables (go to Admin -> Variables)

a. gcp_project - the name of your project
b. gcs_bucket - the name of the bucket you created in step 2 of the previous slides

without the "gs://" prefix
c. gce_region - us-central1
d. dataproc_service_account - the service account for your composer environment

- full name with domain
5. Trigger the DAG if it has not already triggered. It will be named "summit_dag"

https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/main/composer/2022_airflow_summit/data_analytics_process.py
https://cloud.google.com/storage/docs/uploading-objects
https://cloud.google.com/storage/docs/uploading-objects
https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/main/data-science-onramp/data-ingestion/holidays.csv
https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/main/composer/2022_airflow_summit/data_analytics_dag.py
https://airflow.apache.org/docs/apache-airflow/stable/howto/variable.html

Group Exercise: Data Analytics DAG

1. Go to BigQuery
2. Open the holidays_weather dataset dropdown and choose

holidays_weather_normalized
3. Click "Query" at the top to open the Query window
4. Run the following Query SELECT Date, value FROM

`<your-project>.holiday_weather.holidays_weather_normalized` where Holiday="Thanksgiving Day";

5. In the "Query Results" tab click "Explore data" and choose "Explore with Data Studio"
6. Delete the default views by hovering over them, choosing the 3 dots, then clicking

"Delete"
7. At the top, click "add a chart" and Choose "Line Chart"
8. In the bottom right for "Metric" choose "Value" and "average"
9. At the top of the chart, click "AZ" and choose "Date" and the arrow that indicates

"Ascending"
10. This will show the temperature in Chicago on every Thanksgiving from 1997 to 2021

http://console.cloud.google.com/bigquery

DAG troubleshooting
on Cloud Composer

05

Notifications

Notification on DAG run failures

Goal: get email notification on DAG run failures for all Composer environments in a project

Cloud Monitoring

Email Notification ChannelAlert Policy
(status == failed?)DAG Run Metrics

1. Create Notification Channel

Go to Monitoring - Alerting

1. Create Notification Channel
Edit Notification Channels

Create Email Notification Channel for yourself

2. Create Alerting Policy
Create Policy

Find Composer Workflow

2. Create Alerting Policy
Find Workflow Runs Metric

2. Create Alerting Policy
Add Regex filter for failed Runs (we want notifications for failed runs only)

Change function to count - we want to be notified for count of DAG Run failures

2. Create Alerting Policy
Set trigger condition to >0 (i.e. when count of failed DAG runs exceeds 0)

2. Create Alerting Policy
Use your Email Notification Channel

And save it all under with a desired Alert Policy

Troubleshooting

DAG Troubleshooting

● Autoscaling showcase

● Retries

● Notifications on DAG failure

● Permissions troubleshooting

Exercise: Autoscaling

The exercise shows how autoscaling in Cloud Composer 2 adds and removes computing resources automatically.

Prerequisites

- Running Cloud Composer 2 environment (small)

- Minimum number of workers: 1

- Maximum number of workers: 3

- Exercise DAG:
https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/main/composer/2022_airflow_summit/parallel_work.py

- Related configuration:
[celery] worker_concurency = 6

Exercise: Retries

The exercise shows what happens when an API fails and how to prevent failures of the whole pipeline.

Prerequisites

- Running Cloud Composer environment

- Exercise DAG:
https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/main/composer/2022_airflow_summit/retries.py

Exercise: Debugging Permissions

The exercise shows how to find permission problems and how to fix permissions for DAGs.

Prerequisites

- Newly created Cloud Composer environment (the one you created today)

- BigQuery table with some data

- E.g. holiday_weather.holidays

- Or your own BigQuery table in a different project

- Exercise DAG:
https://github.dev/GoogleCloudPlatform/python-docs-samples/blob/main/composer/2022_airflow_summit/bigquery_permissions.py

Thank you.

