Let's flow together

Airflow at Reddit -
How we migrated
from Airflow 1

to Airflow 2

Dave Milmont Branden West
Senior Software Software Engineer I
Engineer at Reddit at Reddit

~Z Airflow Summit

September 19 - 21, 2023
Toronto, Canada
airflowsummit.org

01.
Infrastructure Overview

Scale

1500+ DAGs
30000+ Daily Tasks

Over a Petabyte of Data Processed Daily

@ reddit

Old Setup and its Challenges

Amazon EC2

e Airflow deployed on single ec2 instance managed with puppet, with unknown
amount of manual modifications.

Awkward DAG deployment tooling - manual process that took ¥4 minutes.
Python dependency hell

LocalExecutor

DAG backilling was very difficult/impossible to perform.

Reddit was experiencing large growth. Scaling this old infrastructure was
challenging.

e No staging environment

@ reddit

Moving to Kubernetes

« Reddit manages our own kubernetes clusters
« Airflow Scales easily on kubernetes
o KubernetesExecutor:
o Ability to handle processing tasks on specific nodes.
o Containers for different environments and languages e.g. Scala job
o We can scale up when necessary and then release resources when
finished.
« Take advantage of the official airflow helm chart - a more standard
deployment.

@ reddit

02.

Migration Philosophies

Infra Migration Strategy
Option 1: In Place

Steps

e Upgrade ec2 based airflow to the bridge release
e Update DAG code to be compatible with airflow 2.0
e Point DAGs to airflow 2 running on k8s.

Pros:

e Simplest approach - focus only on DAG compatibility.
e DAG dependencies remain in place.

Cons:

e Resolving delta between puppet and ec2 - major problem.

e Untangling python dependency hell.
e Unknown amounts of downtime that might occur from the
previous two actions.

@ reddit

Infra Migration Strategy

Option 2: Shift to Separate Airflow 2 Instance
Steps

1. Stand up new airflow 2 instance on k8s.
2. Shift DAGs to new repository, update code to work on
airflow 2 from there.

Pros:

e Allows airflow instance and repo to start from a clean slate
using best practices.

e Precarious airflow 1 instance does not need to be modified,
less risk of downtime.

Cons:

e More time consuming than in place, and less convenient.
o Moving code between repositories.
o DAG dependencies can be tricky to handle.

@ reddit

DAG Migration Strategy: Big Bang vs
Piecemeal

e Big Bang: Migrate all DAG’s over all at once. Turn on all at
the same time.
o Pros: DAG dependencies no longer a problem
o Cons: Requires total code freeze
e Piecemeal: Separately migrate groups of dependent DAG’s
o Pros: Can tackle in smaller batches
o Cons:
m Difficult for DAG owners to coordinate
dependencies.
m Most of our DAGs depend on each other.

@ reddit

Why we chose the Big Bang
approach

e Complex Dag Dependencies 7 — %

prohibited a piecemeal approach
o The large majority of our DAGs

L —

We re d e p e n d e nt O n e a C h Oth e r. ‘ data-prod-165221.experiments.stg_long_feeds_metrics_v2 ‘ ‘ reddit-relevance retention.home_1_day_gv_simple_training_data ‘ |:

. B i g B a n g a I I ow s f o r : :;_J data-prod—l6522l.expen'ments.agf_exp_metzics_feeds_metrics_b
O A | a rg e b Ut b rl ef ?O d e fre e Z e I data-prod-165221._script85cacca312a61c864a63c8ac943ce824 1ef1b23c.user_metrics ‘ ‘ data-prod-165221. _scriptcd49237d1c77¢2ead To7ce95
m No Code Drift 1 N\

data-prod-165221. _script85cacca312a61c864a63c8ac943ce8241ef1b23c.winsorization_cutoffs ‘ data-prod-165221. _scriptcd49237d1c77e2ead7

~. l

data-prod-165221._script85cacca312a61c864a63c8ac943ce8241ef1b23c.metric_sums

\

data-prod-165221. _script85cacca312a61c864a63c8ac943ce8241ef1b23c variant_breakout_results ‘ ’ data-prod-165221._scriptcd49237d1c77e2

-165221.i18n.sfw_active_mods_geo_reporting data-prod-165221.metrics_fact_tables.feeds_metrics_v2 reddit- growth prod.growth_team_tables.onboarding.

‘ data-prod-165221._scriptcd49237d1c77e2

@ reddit

| 11— S o — -
e —— - .

e —————————— 1101111158, 1L S R e S B .|

R ————————— e L e T p—

) s s S ——| LSS RN RS S et | o |
nl.,l,\.. AL

O reddit

02.
Migration Steps

How we determined iy N
which DAG’s were
actually being used

from airflow.models import DagBag

dag_path = Path("dags")

H H H dagbag = DagBag(dag_folder=str(dag_path.absolute()), include_examples=False)
e Vast majority of our DAGs write to il - P
tables In BIgQuery' for dag_id in dagbag.dag_ids:
e Find DAG to table mapping, and find oo een-oet dRoldae i)

owner = dag.owner

usage of table. fablesiiic = []

for ti in dag.get_task_instances():

® Rank DAG’s by usage task_id = ti.task_id

task = copy.copy(dag.get_task(task_id))

4 if task.task_type == "BatchBigQueryOperator":
o CUt a” the DAG S Whose tables Were tables_lisi?append(task.dZstinztFi)on_dataset_table)
unused datal[dag_id] = {"tables": set(tables_list), "owner": owner}
o This meant tables that were only Elen e e
aCCeSSed by Airflow’ no Other print(f"{dag_id},{table},{values['owner']}")

users This gets us a map of DAG’s to the table(s) they write to

@ reddit

Migration Timeline/Comms/Instructions

e Code Freeze

e Communication is key

e Team Effort - dividing up work among team

e Swapping out airflow 1.0 operators to airflow 2.0
operators using provider packages

e Runbooks are useful

@ reddit

03.
DAG Factory

What is a DAG
Factory

e Creates DAG’s dynamically from a config file
o Reduces boilerplate

PreWorkflowTasks

Fact PostWorkflowTasks
‘write_to_reddit-protected-data.fact_tables.search_backend_events H create_view_data-prod-165221 fact tables.search backend events

@ reddit

Issues we Faced

o No consistent pattern
for writing DAG’s

o Disorganized

o Prone to errors

e Some DAG’s were
grouped into “mega
dags”

o Backfills were time
consuming and
computationally
expensive

o Brittle — a failure in
one task would
delay all others

How a DAG
Factory Helps

e DAG’s are all written in a consistent way.

e FEasy, self-serve way to create a new DAG. Just need to create a
config file.

e Saved us a lot of effort during migration

e FEasy to add new capabilities that automatically apply to all DAG’s
at once

@ reddit

Finding our most

from airflow.models import DagBag

used Operators from collections import Counter
subdir = "dags"
e Finding list of most used dagbag = DagBag(dag_folder=str(subdir), include_examples=False)
operators to see how we can [
create workflows def get_dag_task_types(dagbag: DagBag):
e 80/20 principle tasks = []
e Most DAG’s involved:
o sensing on upstream for dag_id in dagbag.dag_ids:
tables , dag = dagbag.get_dag(dag_id)
o creating a new table, 12 for _, values in dag.task_dict.items():
writing to that table : tasks.append(values.operator_name)
© creating a view on that ' counts = Counter(tasks)
table

percents = [(i, counts[i] / len(tasks) x 100.0) for i in counts]

© triggering a dashboard return counts, percents, tasks

e Slack and Email were our main
alerting operators

counts, percents, tasks = get_dag_task_types(dagbag)

O reddit

03.
Challenges and Learnings

Challenges

e Migrations are hard and take a long time.
e Requires buy-in, communicate the benefits!
e Documentation on the new system - how to use it.

e No interruptions during the migration process.

@ reddit

Learnings

e Team effort and great communication is essential.
e Plan for contingencies (failures, runbooks)

e Reduce the migration workload as much as possible.
Don’t blindly migrate everything.

e Tooling to make migration easier. DAG factories are
great!

@ reddit

Thanks for listening!!

