
Migrating
Airflow at
Reddit
Dave Milmont, Branden West

Infrastructure Overview
01.

3

Scale

1500+ DAGs

30000+ Daily Tasks

Over a Petabyte of Data Processed Daily

4

Old Setup and its Challenges

● Airflow deployed on single ec2 instance managed with puppet, with unknown
amount of manual modifications.

● Awkward DAG deployment tooling - manual process that took ~4 minutes.
● Python dependency hell
● LocalExecutor
● DAG backilling was very difficult/impossible to perform.
● Reddit was experiencing large growth. Scaling this old infrastructure was

challenging.
● No staging environment

5

Moving to Kubernetes

● Reddit manages our own kubernetes clusters
● Airflow Scales easily on kubernetes
● KubernetesExecutor:

○ Ability to handle processing tasks on specific nodes.
○ Containers for different environments and languages e.g. Scala job
○ We can scale up when necessary and then release resources when

finished.
● Take advantage of the official airflow helm chart - a more standard

deployment.

Migration Philosophies
02.

7

Infra Migration Strategy

Steps

● Upgrade ec2 based airflow to the bridge release
● Update DAG code to be compatible with airflow 2.0
● Point DAGs to airflow 2 running on k8s.

Pros:

● Simplest approach - focus only on DAG compatibility.
● DAG dependencies remain in place.

Cons:

● Resolving delta between puppet and ec2 - major problem.
● Untangling python dependency hell.
● Unknown amounts of downtime that might occur from the

previous two actions.

Option 1: In Place

8

Infra Migration Strategy

Steps

1. Stand up new airflow 2 instance on k8s.
2. Shift DAGs to new repository, update code to work on

airflow 2 from there.

Pros:

● Allows airflow instance and repo to start from a clean slate
using best practices.

● Precarious airflow 1 instance does not need to be modified,
less risk of downtime.

Cons:

● More time consuming than in place, and less convenient.
○ Moving code between repositories.
○ DAG dependencies can be tricky to handle.

Option 2: Shift to Separate Airflow 2 Instance

9

DAG Migration Strategy: Big Bang vs
Piecemeal

● Big Bang: Migrate all DAG’s over all at once. Turn on all at
the same time.
○ Pros: DAG dependencies no longer a problem
○ Cons: Requires total code freeze

● Piecemeal: Separately migrate groups of dependent DAG’s
○ Pros: Can tackle in smaller batches
○ Cons:

■ Difficult for DAG owners to coordinate
dependencies.

■ Most of our DAGs depend on each other.

10

Why we chose the Big Bang
approach

● Complex Dag Dependencies
prohibited a piecemeal approach
○ The large majority of our DAGs

were dependent on each other.

● Big Bang allows for:
○ A large but brief code freeze

■ No Code Drift

11

Migration Steps
02.

13

How we determined
which DAG’s were
actually being used
● Vast majority of our DAGs write to

tables in BigQuery.
● Find DAG to table mapping, and find

usage of table.
● Rank DAG’s by usage
● Cut all the DAG’s whose tables were

unused
○ This meant tables that were only

accessed by Airflow, no other
users This gets us a map of DAG’s to the table(s) they write to

14

Migration Timeline/Comms/Instructions
● Code Freeze

● Communication is key

● Team Effort - dividing up work among team

● Swapping out airflow 1.0 operators to airflow 2.0

operators using provider packages

● Runbooks are useful

DAG Factory
03.

16

What is a DAG
Factory

● Creates DAG’s dynamically from a config file
○ Reduces boilerplate

17

Issues we Faced

● No consistent pattern
for writing DAG’s
○ Disorganized
○ Prone to errors

● Some DAG’s were
grouped into “mega
dags”
○ Backfills were time

consuming and
computationally
expensive

○ Brittle – a failure in
one task would
delay all others

18

How a DAG
Factory Helps

● DAG’s are all written in a consistent way.
● Easy, self-serve way to create a new DAG. Just need to create a

config file.
● Saved us a lot of effort during migration
● Easy to add new capabilities that automatically apply to all DAG’s

at once

19

Finding our most
used Operators

● Finding list of most used
operators to see how we can
create workflows

● 80/20 principle
● Most DAG’s involved:

○ sensing on upstream
tables

○ creating a new table,
writing to that table

○ creating a view on that
table

○ triggering a dashboard
● Slack and Email were our main

alerting operators

Challenges and Learnings
03.

21

Challenges

● Migrations are hard and take a long time.

● Requires buy-in, communicate the benefits!

● Documentation on the new system - how to use it.

● No interruptions during the migration process.

22

Learnings

● Team effort and great communication is essential.

● Plan for contingencies (failures, runbooks)

● Reduce the migration workload as much as possible.
Don’t blindly migrate everything.

● Tooling to make migration easier. DAG factories are
great!

Thanks for listening!!

