¢

Zhengyi Liu, Han Gan, Yuri Desyatnik, Nanxi Chen X Airflow Summit
Let's flow together

September 19-21, 2023,
Toronto, Canada

Snap’s Airflow Story

Who are we

Zhengyi Liu Han Gan Yuri Desyatnik Nanxi Chen
Engineering Manager @ Snap Software Engineer @ Snap Sr Security TPM @ Snap Privacy Engineer @ Snap

What we will cover today

1. Introduction - our story
2. Architecture choices
3. Securing our Airflow deployment

4. Tough part - migration!

Who is Snap Inc.?

Q

Sheila P.
@ New Snap
@ New Snap

Ashley A.
@ New Snap

3
2

GDD®O O

Ti
>

g Brunch Club
J=

O
o
0
(€]

Og&
@ 0
§ =

Johnny O.
Olivia S.
=)

Diana M.

0

Leila D.

D

Caroline A.

Chat Q2 ¥
1784 @
134 4

954

©
834

Spotlight

#almostpro. #whattheflip

©)

Scale of Airflow @ Snap

3000 DAGs 330K Task Instances / Day 200+ Operators 1000+ Active Users

2016

Built the first Airflow

2019

Built a task level access
control model with code
integration. DAG count
grew from few hundreds to

2022

Launch Airflow 2 side by

2000+, managing task level side with brand new

deployment with slightly

security model and
less than 100 DAGs

permissions was painful.
toolings.

O
~7

o

O F @ T O
~7 ~7

O

2018

Multiple Airflow
deployments on GKE for
isolations. It soon grows to
50+! Very hard to manage

with a lean team.

Challenges

At this moment, there are
multiple challenges
regarding infra/software
maintenance, permission
management,

discoverability, etc.

2023

Embraced Airflow 2+ and

migrated teams over

Architecture Choices

Single cluster

Multiple single-tenant
clusters

Multiple multi-tenant
clusters

Maintainability

Scalability

Isolation/Security

Users

Previous Architecture | @)

e Multiple clusters - poor DAG
discoverability and extra service for cross

cluster dependencies @ idecar DAG syn . @

Cloud
Web server Storage Web server

GKE Cluster - Team 1 GKE Cluster - Team 2

e Sidecars to sync DAG code from GCS -

sometime inconsistent and difficult to 6« 6 Q ;’6 6 6

traCk deployment Scheduler Flower Redis Scheduler Flower Redis
O- —0
e Celery executor with shared worker - no Shared Worker Shared Worker

flexibility in scale and runtime

environment é é

Cloud Cloud
SQL - SQL -
MySQL MySQL

Current Architecture

e Heavily leveraging Kubernetes and
embrace Airflow Kubernetes executor

e Enforced team level RBAC & pod
level resource access control

e Number of tenants increased from
65+ to 1256+

GKE Cluster @

Users
Webservers
([X) —DAGSs manage—p-- - ! ,
ahh
In-House
................................... RBAC
| - Workers 3
DAGs authoring ;s @ @ @ . e
l : : In-House
.................................... Resource
................................... Access
Schedulers Control
®© 0 O
Testing & ClI
DAG Processors
L | P :
D. -
o 0 o
Build :
Images

@_

Cloud
SQL -
PostgresDB

From Local to Remote Dev

Docker Desktop to host Airflow server in local is

convenient, but..

e slow due to limited laptop resource

e hard to manage resource access permission

e inconsistent behavior with production

&

Local Docker Destop dOCer

Web Server Scheduler

Flower Redis
Worker Postgres

Remote Dev

Users @
0 1. create your own GKE Cluster - Remote Dev
aan instance on demand

&

: Namespace - User 1

e Leverage Skaffold for faster dev l @ @ @

iteration in remote GKE - auto 3. run backfi . :
TENOIE RRE - 4R 3 M
sync local files change to remote %U. unnél & Alflow Command
N FS On the fly ” Namespace -.U.s;r.z : [Rl'le-sH:l:.l"Scee
0 0 0 =
. : Control

e Manage resource access with the

same in-house tooling l2 —
. auto sync local
change tz remote
\ 2
=1 >
Skaffold

NFS

https://skaffold.dev/

Job Access Manager Architecture

Job Access Manager Architecture e One service account per DAG
'.‘ e One-stop access
RMOW °eve'°°e'q - management: cloud resources
'AMwe“”” & internal/external services
g g e Job profile

e ACL management
® Access review

* DAG2- Infra team - Idenflty Role

: : Provision Management Management——
5 @ @ ;. —

pIDGE s Securty teamy : Access ServiceAccount Role

9 o XiIRA
QO O

Workload Identity

Leverage workload
identity to isolate
permission footprint on
each worker pod

No credentials / keys
store on disk nor in the
Airflow database

— Work pod of
DAG-A
Pod

4. Load KSA as
job identity

DAG ID: DAG-A —1\—

DAG ID: DAG-B

Work pod of
DAG-B
@ -
Cluster Policy
Kubernetes
Service Account

KSA-DAG-A

ServiceAccount

Kubernetes
Service Account
KSA-DAG-B

ServiceAccount

1. Derive KSA fron

DAG ID

Job Access Manager

Kubernetes
Service Account
KSA-DAG-A

ServiceAccount
|
| j
KSA i

GCP Service
Account
GSA-DAG-A

ServiceAccount

Kubernetes
Service Account
KSA-DAG-A

ServiceAccount

GCP Service
Account
GSA-DAG-A

ServiceAccount

3. Create KSA

https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity
https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity

Streamline access management

EYITTRY Scheduie:0+++* () Next Aun: 2029-08.29, 2300:00,
[@) do_operators_canary
Bow (3 Caondr @ TaskDuration = Tk T

& Landing Times

ZGamt ADswis <>Code [Audtlog @ AccsssGroup B A Confa 4
() 2030820122000 | Runs | 25 v Run schedued 2023-08:29T220000400:00 v Layout Let>Right [Update

BaaueyOperor

(OKePodOpaaor | GosDoltoOparatr| GosFlCountSansor | GesJaOpersor | GesToBaOparalor

15 (Emaiopesio Empiyopedfor
Python0perater

Ado-refresh | C

\ Link to the IAM page

\\\

=

Config Name*

Contact Email
do_operators_canary hgan@snapchat.com
ACL Namespace*

AcL Group®

Deep integration
with cloud IAM

Environment

> JAM Service Account

Consolidated Role
e ~eases the permissi
management

PRJ blizzard-operation

blizzard-operation

roles/dataflow.jam
e el
1 PRy 4 View Admins
PR fowrida-staging

flowrida-staging

rolesbigquery.dataOwner AView Admins

extendedList.add(
IamService.IamPolicy(
iamPolicy.
RoleConstants.
iamPolicy.
iamPolicy.
iamPolicy.
extendedList.add(
IamService.IamPolicy(
iamPolicy.
RoleConstants.
iamPolicy.
iamPolicy.

iamPolicy.

xtendedList.add(
IamService.IamPolicy(
iamPolicy.
RoleConstants.
iamPolicy.
Project.
ResourceScope.)
extendedList.add(
IamService.IamPolicy(
computeAgent
RoleConstants.
iamPolicy.
Project.
ResourceScope.)
extendedList.add(
IamService.IamPolicy(
computeAgent
RoleConstants.
iamPolicy.

Project.

ResourceScope.)
extendedList.add(

IamService.IamPolicy(
dataflowAgent
RoleConstants.
iamPolicy.

Project.

esourceScope.

£ View Admins

W Delete

Permission reduction

[l avgRoleToPrincipal

To enforce Least Privilege Principle
DAGs are isolated by using exclusive SA for
each DAG |
DAGs are periodic. Permission is high likely
not needed if it is unused after several DAG
run intervals.

Very helpful after migration. Earlier
permissions are over-provisioned for one
DAG as SA is shared by multiple DAGs.

)
y
\
y

1,

Security - RBAC

Access group name shows only

k Airflow
DAGs
Active m Paused @

DAG

DAGs Security

0 example_bash_operator

example example2

0 example_branch_dop_operator_v3

example

example_branch_operator

example example2

Browse

Admin

Docs

example_team

Owner Runs

airflow @

airflow

airflow

Schedule

00***

ajqaann

@daily

.~ DAGSs they own

l Flowrida DAGs Browse

example_dag

G Calendar

M Grid

<> Code

*§ Graph

B Audit Log

@ Access Group [/

Docs Deployment Info

& Task Duration = Task Tries

L\ Landing Times

B3 Job Access Manager Config [

03:49 UTC -

Schedule: 00 23 * * * Next Run: 2023-09-13, 23:00:00

= Gantt A\ Details

2020-10-23, 14:09:17

Airflow Ul

Job Access
Manager

Opens IAM Ul with
all group members

Access to
resources

Opens Job Access
Manager Ul with
all resources
owned by access

group

DAG code security

CI/CD checks ensure DAGs are free from common security vulnerabilities

Dev Local commit Github commit PR Request Main PY Pre_com m |t scan - for
at commity monitoring branch

commits

git push <branch>)

create PR Request e PR scan - for monitoring
commits to main
merﬂtomain)

- e Daily scan of main - to
prevent vulnerabilities

introduced outside CI/CD

Dev Local commit Github commit PR Request Main

Migration Challenges

e Engineering resources
o DAG owners are busy people
o How to entice Airflow customers to move?

e Operator availability
o New secure operators have to be created
o It’s hard to make some operators secure (e.g.
GKEPodOperator)

e Migration efficiency
o How to make migration simple, fast and error-free?
o How to organize, engage and facilitate customer
team migrations?

Migration Flow

() s N N
iffing on
Converter tool Job Access s Metadata
Manager template service
N J . > . J
Add d (1 [i
Freeze V1 Run migration cr::: ceo - Provision > Test on remote Create PR and Turn off V1 DAG
DAG automation 9 access server merge Turn on V2 DAG
suggestions
. 79 % g _ /
Goals for migration process: Tools

e Converter - code changes

e Ease of migration / user experience

e Job Access Manager - add permissions/roles base on
old service account

e Customer feels supported

e Diffing on render template to confirm new DAG works

e /ero negative production outcomes e Metadata service - allow Airflow v1 and v2 external task
sensors to poke across for clusters dependencies

DAG Generation from Metadata

e (Collect metadata from old DAG to generate v2

code and permissions

e Work great for operators with limited custom logic

Worked for
~40% of
DAGs

‘;/>

v2 DAG/task code templates

Additio! lmetdt
(e.g.vic

A n—ﬂ

docker

v1 containers v1 DAGs metadata collector collected v1 DAGs metadata v2 in-house RBAC policy creator in-house RBAC APIs

v2 DAG code files

Takeaways

o Infrastructure
m Multi-tenant cluster
m Remote server for testing and backfill

o Security
m One service account per DAG
m Mapped to workload identity of execution pod
m RBAC for Ul and service account access
m DAG code CI/CD scanning

o Migration
m Maximum automation
m Positive customer engagement
m Flexibility with approach to different customers
m Executive support

Airflow 2.x

Managed K8s

RBAC

Job access
isolation

5 A QN

DAG static
analysis

Questions?

4

Optionally share some contact info like
email, blog or social media handles

