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Who are we

Zhengyi Liu Han Gan Yuri Desyatnik Nanxi Chen
Engineering Manager @ Snap Software Engineer @ Snap Sr Security TPM @ Snap Privacy Engineer @ Snap



What we will cover today

1. Introduction - our story
2. Architecture choices
3. Securing our Airflow deployment

4. Tough part - migration!
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Scale of Airflow @ Snap

3000 DAGs 330K Task Instances / Day 200+ Operators 1000+ Active Users



2016

Built the first Airflow

2019

Built a task level access
control model with code
integration. DAG count
grew from few hundreds to

2022

Launch Airflow 2 side by

2000+, managing task level side with brand new

deployment with slightly

security model and
less than 100 DAGs

permissions was painful.
toolings.
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2018

Multiple Airflow
deployments on GKE for
isolations. It soon grows to
50+! Very hard to manage

with a lean team.

Challenges

At this moment, there are
multiple challenges
regarding infra/software
maintenance, permission
management,

discoverability, etc.

2023

Embraced Airflow 2+ and

migrated teams over



Architecture Choices

Single cluster

Multiple single-tenant
clusters

Multiple multi-tenant
clusters

Maintainability

Scalability

Isolation/Security




Users

Previous Architecture | @)

e Multiple clusters - poor DAG
discoverability and extra service for cross

cluster dependencies @ idecar DAG syn . @

Cloud
Web server Storage Web server

GKE Cluster - Team 1 GKE Cluster - Team 2

e Sidecars to sync DAG code from GCS -

sometime inconsistent and difficult to 6« 6 Q ;’6 6 6

traCk deployment Scheduler Flower Redis Scheduler Flower Redis
O- —0
e Celery executor with shared worker - no Shared Worker Shared Worker

flexibility in scale and runtime

environment é é

Cloud Cloud
SQL - SQL -
MySQL MySQL




Current Architecture

e Heavily leveraging Kubernetes and
embrace Airflow Kubernetes executor

e Enforced team level RBAC & pod
level resource access control

e Number of tenants increased from
65+ to 1256+

GKE Cluster @
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Webservers
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ahh
In-House
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From Local to Remote Dev

Docker Desktop to host Airflow server in local is

convenient, but..

e slow due to limited laptop resource

e hard to manage resource access permission

e inconsistent behavior with production

&

Local Docker Destop dOCer

Web Server Scheduler

Flower Redis
Worker Postgres



Remote Dev

Users @
0 1. create your own GKE Cluster - Remote Dev
aan instance on demand

&

: Namespace - User 1

e Leverage Skaffold for faster dev l @ @ @

iteration in remote GKE - auto 3. run backfi . :
TENOIE RRE - 4R 3 M
sync local files change to remote %U. unnél & Alflow Command
N FS On the fly ” Namespace -.U.s;r.z ...................... : [Rl'le-sH:l:.l"Scee
0 0 0 =
. : Control

e Manage resource access with the

same in-house tooling l2 —
. auto sync local
change tz remote
\ 2
=1 >
Skaffold

NFS


https://skaffold.dev/

Job Access Manager Architecture

Job Access Manager Architecture e One service account per DAG
'.‘ e One-stop access
RMOW °eve'°°e'q - management: cloud resources
'AMwe“”” & internal/external services
g g e Job profile

e ACL management
® Access review

* DAG2- Infra team - Idenflty Role

: : Provision Management Management——
5 @ @ ;. —

pIDGE s Securty teamy : Access ServiceAccount Role
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Workload Identity

Leverage workload
identity to isolate
permission footprint on
each worker pod

No credentials / keys
store on disk nor in the
Airflow database

— Work pod of
DAG-A
Pod

4. Load KSA as
job identity

DAG ID: DAG-A —1\—

DAG ID: DAG-B

Work pod of
DAG-B
@ -
Cluster Policy
Kubernetes
Service Account

KSA-DAG-A

ServiceAccount

Kubernetes
Service Account
KSA-DAG-B

ServiceAccount

1. Derive KSA fron

DAG ID

Job Access Manager

Kubernetes
Service Account
KSA-DAG-A

ServiceAccount
|
| j
KSA i

GCP Service
Account
GSA-DAG-A

ServiceAccount

Kubernetes
Service Account
KSA-DAG-A

ServiceAccount

GCP Service
Account
GSA-DAG-A

ServiceAccount

3. Create KSA


https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity
https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity

Streamline access management
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Permission reduction

[l avgRoleToPrincipal

To enforce Least Privilege Principle
DAGs are isolated by using exclusive SA for
each DAG |
DAGs are periodic. Permission is high likely
not needed if it is unused after several DAG
run intervals.

Very helpful after migration. Earlier
permissions are over-provisioned for one
DAG as SA is shared by multiple DAGs.
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Security - RBAC

Access group name shows only

k Airflow
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DAG code security

CI/CD checks ensure DAGs are free from common security vulnerabilities

Dev Local commit Github commit PR Request Main PY Pre_com m |t scan - for
at commity monitoring branch

commits

git push <branch> )

create PR Request e PR scan - for monitoring
commits to main
merﬂtomain)

- e Daily scan of main - to
prevent vulnerabilities

introduced outside CI/CD

Dev Local commit Github commit PR Request Main



Migration Challenges

e Engineering resources
o DAG owners are busy people
o How to entice Airflow customers to move?

e Operator availability
o New secure operators have to be created
o It’s hard to make some operators secure (e.g.
GKEPodOperator)

e Migration efficiency
o How to make migration simple, fast and error-free?
o How to organize, engage and facilitate customer
team migrations?




Migration Flow

( ) s N N
iffing on
Converter tool Job Access s Metadata
Manager template service
N J . > . J
Add d ( 1 [ i
Freeze V1 Run migration cr::: ceo - Provision > Test on remote Create PR and Turn off V1 DAG
DAG automation 9 access server merge Turn on V2 DAG
suggestions
. 79 % g \_ /
Goals for migration process: Tools

e Converter - code changes

e Ease of migration / user experience

e Job Access Manager - add permissions/roles base on
old service account

e Customer feels supported

e Diffing on render template to confirm new DAG works

e /ero negative production outcomes e  Metadata service - allow Airflow v1 and v2 external task
sensors to poke across for clusters dependencies




DAG Generation from Metadata

e (Collect metadata from old DAG to generate v2

code and permissions

e Work great for operators with limited custom logic

Worked for
~40% of
DAGs

‘;/>

v2 DAG/task code templates

Additio! lmetdt
(e.g.vic

A n—ﬂ

docker

v1 containers v1 DAGs metadata collector collected v1 DAGs metadata v2 in-house RBAC policy creator in-house RBAC APIs

v2 DAG code files



Takeaways

o Infrastructure
m  Multi-tenant cluster
m Remote server for testing and backfill

o  Security
m  One service account per DAG
m Mapped to workload identity of execution pod
m RBAC for Ul and service account access
m DAG code CI/CD scanning

o Migration
m  Maximum automation
m Positive customer engagement
m  Flexibility with approach to different customers
m Executive support

Airflow 2.x

Managed K8s

RBAC

Job access
isolation

5 A QN

DAG static
analysis




Questions?
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Optionally share some contact info like
email, blog or social media handles



