
Snap’s Airflow Story

Zhengyi Liu, Han Gan, Yuri Desyatnik, Nanxi Chen

Yuri Desyatnik
Sr Security TPM @ Snap

Zhengyi Liu
Engineering Manager @ Snap

Han Gan
Software Engineer @ Snap

Nanxi Chen
Privacy Engineer @ Snap

Who are we

What we will cover today

1. Introduction - our story

2. Architecture choices

3. Securing our Airflow deployment

4. Tough part - migration!

Who is Snap Inc.?

3000 DAGs 330K Task Instances / Day

Scale of Airflow @ Snap

200+ Operators 1000+ Active Users

START

2016
Built the first Airflow

deployment with slightly

less than 100 DAGs

2018
Multiple Airflow

deployments on GKE for

isolations. It soon grows to

50+! Very hard to manage

with a lean team.

2019
Built a task level access

control model with code

integration. DAG count

grew from few hundreds to

2000+, managing task level

permissions was painful.

2022
Launch Airflow 2 side by

side with brand new

security model and

toolings.

2023
Embraced Airflow 2+ and

migrated teams over

Challenges
At this moment, there are

multiple challenges

regarding infra/software

maintenance, permission

management,

discoverability, etc.

Architecture Choices

Single cluster Multiple single-tenant
clusters

Multi-tenant cluster Multiple multi-tenant
clusters

Maintainability ⭐⭐⭐ ⭐ ⭐⭐⭐ ⭐

Scalability ⭐⭐ ⭐⭐⭐ ⭐⭐ ⭐⭐⭐

Isolation/Security ⭐ ⭐⭐ ⭐⭐⭐ ⭐⭐⭐

Previous Architecture
● Multiple clusters - poor DAG

discoverability and extra service for cross
cluster dependencies

● Sidecars to sync DAG code from GCS -
sometime inconsistent and difficult to
track deployment

● Celery executor with shared worker - no
flexibility in scale and runtime
environment

Current Architecture
● Heavily leveraging Kubernetes and

embrace Airflow Kubernetes executor

● Enforced team level RBAC & pod
level resource access control

● Number of tenants increased from
65+ to 125+

From Local to Remote Dev

Docker Desktop to host Airflow server in local is
convenient, but..

● slow due to limited laptop resource

● hard to manage resource access permission

● inconsistent behavior with production

Remote Dev

● Leverage Skaffold for faster dev
iteration in remote GKE - auto
sync local files change to remote
NFS on the fly

● Manage resource access with the
same in-house tooling

https://skaffold.dev/

Job Access Manager Architecture

● One service account per DAG
● One-stop access

management: cloud resources
& internal/external services

● Job profile
● ACL management
● Access review

Workload Identity

● Leverage workload
identity to isolate
permission footprint on
each worker pod

● No credentials / keys
store on disk nor in the
Airflow database

https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity
https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity

Streamline access management

Deep integration
with cloud IAM

Consolidated Role
eases the permission
management

Permission reduction

● To enforce Least Privilege Principle
● DAGs are isolated by using exclusive SA for

each DAG
● DAGs are periodic. Permission is high likely

not needed if it is unused after several DAG
run intervals.

● Very helpful after migration. Earlier
permissions are over-provisioned for one
DAG as SA is shared by multiple DAGs.

Security - RBAC

example_team

Access group name shows only
DAGs they own

Opens IAM UI with
all group members

Opens Job Access
Manager UI with
all resources
owned by access
group

Airflow UI Job Access
Manager

Access to
resources

RBAC

DAG code security

CI/CD checks ensure DAGs are free from common security vulnerabilities

● Pre-commit scan - for
monitoring branch
commits

● PR scan - for monitoring
commits to main

● Daily scan of main - to
prevent vulnerabilities
introduced outside CI/CD

Migration Challenges
● Engineering resources

○ DAG owners are busy people
○ How to entice Airflow customers to move?

● Operator availability
○ New secure operators have to be created
○ It’s hard to make some operators secure (e.g.

GKEPodOperator)

● Migration efficiency
○ How to make migration simple, fast and error-free?
○ How to organize, engage and facilitate customer

team migrations?

Migration Flow

Goals for migration process:

● Ease of migration / user experience

● Customer feels supported

● Zero negative production outcomes

Tools

● Converter - code changes

● Job Access Manager - add permissions/roles base on
old service account

● Diffing on render template to confirm new DAG works

● Metadata service - allow Airflow v1 and v2 external task
sensors to poke across for clusters dependencies

Tools

DAG Generation from Metadata

● Collect metadata from old DAG to generate v2
code and permissions

● Work great for operators with limited custom logic

Worked for
~40% of

DAGs

Takeaways

○ Infrastructure
■ Multi-tenant cluster
■ Remote server for testing and backfill

○ Security
■ One service account per DAG
■ Mapped to workload identity of execution pod
■ RBAC for UI and service account access
■ DAG code CI/CD scanning

○ Migration
■ Maximum automation
■ Positive customer engagement
■ Flexibility with approach to different customers
■ Executive support

Airflow 2.x

Managed K8s

RBAC

Job access
isolation

DAG static
analysis

Questions?

Optionally share some contact info like
email, blog or social media handles

