
Testing Airflow 
Dags with dagtest

Victor Chiapaikeo
Aldo Orozco



Agenda

● Airflow @ Etsy
● User Archetypes
● The Problem
● Solutions & Inspiration
● dagtest
● Internals of dagtest
● Call to Action



Airflow @ Etsy



Airflow @ Etsy

● 4 Environments

● 2000+ Active DAGs in prod

● ~30k tasks running daily

● 100s of active users

● 7 VMs - LocalExecutor - 1.10.3 → 1 K8s cluster - KubernetesExecutor - 2.6.3



User 
Archetypes



User Archetypes

● Data Engineers, Product Engineers, ML Engineers, Data Analysts / Scientists, etc.

● 2 Categories:

• DAG Owner

• Platform Developer

DAG Owner

Platform Developer



DAG Owners

● Majority of users (80%)
● Owns 1+ DAG(s)
● Familiar with writing dags and 

interacting via the UI
● Oncaller
● Checks internal and OS docs
● May not know much about docker, k8s 

or python installations

Documentation



Platform Builder

● Minority (20%)
● Enabler of DAG owners
● Core maintainer or power user
● Creates new custom sensors, operators, macros, etc.
● Might be more knowledgeable of docker / python



The Problem



Initial Symptoms



More Symptoms



What About…

● `airflow dag test` cli

● Running locally (breeze)

• Colima / Docker Desktop

• Resource restrictions

• Run a single DAG on the CLI

• Permissions

● GCP Composer

• Too many steps



The problem

● If testing is not SUPER simple, users will work 

around it - testing in prod or no tests at all.

● Testing is risky in production - overwrite data



Solutions & 
Inspiration



Solutions

● We shouldn’t…
• Require users to manually gsutil cp some dag file 

to some bucket
• Require users to pull some large image down
• Require users to pip install some large package 

with transitive dependencies and then setup 
confusing plugin steps

● Test environment should be isolated from production
● Needs to be AS SIMPLE AS POSSIBLE



Solutions

● Some inspiration:
• Databricks
• Spark Shell
• Apache Beam - run pipelines locally 

with LocalRunner
• Client / server architecture



Back to the 2 archetypes

Airflow Dag Owners Airflow Platform Developers 



dagtest



dagtest

● Attempts to empower users with the minimum 
requirements necessary to run a dag (or parts of 
a dag)

● Client part of client/server architecture
● Packaged as an internal PyPi package
● Tiny (13KB vs the base Airflow package’s tar.gz 

at 11MB)
● Users send dags to an adhoc/test environment 

ONLY running with SA’s that do not have access 
to Production buckets

airflow
(11MB)

etsy-dagtest 
(11KB)



Testing w/ dagtest
pip install etsy-dagtest

dagtest path/to/my/dag.py [<execution-date>] [--dry-run] 
[--ignore-dependencies] [--task] [--end-date]





Testing w/ dagtest



Internals



Test API



What happens when users call dagtest?



Environments



The Outcome
● An empowered dag owner who can safely test 

dags outside of Production and faster iteration 
cycles

● PRs for dags can be merged with more 
confidence

● Lower likelihood that Production data is 
corrupted during testing

● Users uncover permissions issues in adhoc 
instead of Production

● If modifying a large Production dag, a single 
task or set of new tasks can be isolated and 
tested



Call to Action



Call to Action

● Gap in OSS offering
● `airflow dags test` does not work well for even 

slightly customized environments
● `airflow dags backfill` does not have proper 

REST API support
● Trigger dag functionality in REST API requires 

that a dag exists on some instance
● Trigger dag also must run the dag from E2E 

(can’t test single or subset of tasks)
● Users shy away from Airflow because of the 

difficulty in testing / developing
● How can we build a better solution for this?



Questions?


