
Airflow at UniCredit
Our journey from mainframe
scheduling to modern data processing

Jan Pawłowski

Jędrzej Matuszak

22

Jan Pawłowski
Murex Reporting Team Head

Airflow at UniCredit

Jędrzej Matuszak
Python Developer

Speakers

Our Warsaw team manages Front
Office data feeds across the UC
Group.

Scale of daily activity:
• 8k batch tasks executed
• 5k data files dispatched
• 2.5bn data points processed

AgendaAgenda Legacy issues – why we moved to
Airflow

Moving to Airflow - the challenges

How we got here

What we gained

The target solution

1

5

4

3

2

44

Mainframe scheduler
• Difficult maintenance: manual change process involving multiple teams

(eg. team A misreads request from team B and removes a task instead of moving it)

• Limited number of available environments/instances

• Only one run scheduled per day – no test flexibility

• No CI process – no version control/automated testing

• Long time to market: minimum 1 day for simple changes

• Poor resource control due to rigid scheduling model

Legacy issues: why we moved to Airflow
Airflow at UniCredit

55

Legacy issues: why we moved to Airflow

The mainframe scheduler's most painful
issue: no dependency visualization.

Thousands of tasks with many-to-many
dependencies created a huge dependency
network

Airflow at UniCredit

66

Airflow at UniCredit
How we got here

May 2020
40% of tasks
migrated to
in-house
scheduler

October 2021
Airflow POC

May 2022
first Airflow deploy
in Production
5% of tasks
migrated

October 2022
50% of tasks
migrated

April 2023
90% of tasks
migrated

July 2023
92% of tasks
migrated

August 2023
Airflow upgrade

[End of 2024]
100% of tasks
migrated

• Python scheduler script: a major scheduling upgrade vs
mainframe

• We later decided to shift to an existing solution: too much effort
to keep upgrading in-house

• This led us to finding Airflow

• After the POC, initiatives to shift
our scheduling into Airflow were
launched

• Production deployments
followed in 2022 and 2023

77

Moving to Airflow: the challenges
Airflow at UniCredit

1. Understanding our own scheduling dependencies to be able to
redefine and simplify them -> months of analytical work
2. Production environment requirements (eg. incident management
requiring a mainframe task crash in the event of a Production failure)
3. Integration with overall IT landscape (other systems to continue using
mainframe scheduling)
4. Understanding the concept of Airflow DAG dependencies – how to
trigger a DAG upon another DAG's success?
5. Airflow resets DAGs after crash + restart, instead of resuming their
execution – how to speed up failure recovery?

88

The „main DAG” concept – our final solution
Airflow at UniCredit

Structure: one main DAG
with multiple sub-DAGs

Scope: > 8k batch tasks
executed daily

99

The target solution - plugins
Airflow at UniCredit

•ResumeDagRunOperator - evolution of
the TriggerDagRunOperator functionality

•DAG task search

•Static time predecessors

•Sensor to provide incident management
(checks for failed tasks and crashes if any are detected)

1010

ResumeDagRunOperator
Airflow at UniCredit

Clearing sample_5 will restart the
DagRun (rerunning 100 tasks) or raise
a DagRunAlreadyExists error.

Clearing sample_5 will resume the
DagRun (rerunning only 10 tasks).

Example: Our 100-task DAG
sample_5 crashes at 90 tasks. To
save time, it is better to resume the
DAG run, rather than rerunning the
whole scope.

Default solution Custom solution

● Restart 100/100
Restart 10/100

1111

Custom DateTimeSensor
Airflow at UniCredit

The customized DateTimeSensor lets us
define offset_duration, specifying the period
during which delta_days is decreased by 1.

Problem: the parent Airflow process is ran manually* at 9pm, while
NY sub-tasks are scheduled for 1am. In case of a severe delay
(eg. parent process starts at 3am), NY tasks would start on 1am of
the next calendar day:

Solution: thanks to offset_duration, the
custom DateTimeSensor allows dependencies to be met even in this
scenario: NY tasks are triggered together with the parent.

*the
Airflow execution_date is t
he same
as DagRun start_date

1212

Task search through DAGs – new feature
Airflow at UniCredit

Problem: While debugging an application crash, the team has to quickly locate the
DAG in which the failed task is located.

Solution: A new search option was added to the Airflow toolbar, allowing us to quickly
locate tasks in our DAGs.

type and select a
task id pattern

list of DAGs with
given task
appears

selected DAG
will be open

1313

The target framework – a hybrid approach
Airflow at UniCredit

We combined Airflow and
mainframe scheduling:
• Incident management via Airfl

ow task fail sensor
(new feature)

• Downstream dependencies to
other systems via mainframe

1414

What we gained
Airflow at UniCredit

• Automated testing (CI with Jenkins)

• Test capacity increased, enabling multiple runs per day across many environments

• Versioning (eg. possibility of defining branching strategies for parallel projects)

• Scheduling as code

• Scalability

• Task latency reduced from 10-60s to 3-10s

• Dependency visualization

• Block approach for tasks

• POC for Airflow in UniCredit - we're open to discuss best practices for usage at scale

• 4 main DAGs

• >250 sub DAGs

• 480 daily DAG runs

• ~8000 daily task
runs

1515

Questions?

Reach us at:
Jan.Pawlowski@unicredit.eu

Jedrzej.Matuszak@unicredit.eu

mailto:Jan.Pawlowski@unicredit.eu
mailto:Jedrzej.Matuszak@unicredit.eu

