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Our Warsaw team manages Front 
Office data feeds across the UC 
Group.

Scale of daily activity:
• 8k batch tasks executed
• 5k data files dispatched
• 2.5bn data points processed
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Mainframe scheduler
• Difficult maintenance: manual change process involving multiple teams

(eg. team A misreads request from team B and removes a task instead of moving it)

• Limited number of available environments/instances

• Only one run scheduled per day – no test flexibility

• No CI process – no version control/automated testing

• Long time to market: minimum 1 day for simple changes

• Poor resource control due to rigid scheduling model

Legacy issues: why we moved to Airflow
Airflow at UniCredit
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Legacy issues: why we moved to Airflow

The mainframe scheduler's most painful 
issue: no dependency visualization. 

Thousands of tasks with many-to-many 
dependencies created a huge dependency 
network

Airflow at UniCredit
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Airflow at UniCredit
How we got here

May 2020
40% of tasks 
migrated to 
in-house 
scheduler 

October 2021 
Airflow POC

May 2022
first Airflow deploy 
in Production
5% of tasks 
migrated 

October 2022
50% of tasks 
migrated

April 2023
90% of tasks 
migrated

July 2023
92% of tasks 
migrated

August 2023
Airflow upgrade

[End of 2024]
100% of tasks 
migrated

• Python scheduler script: a major scheduling upgrade vs 
mainframe

• We later decided to shift to an existing solution: too much effort 
to keep upgrading in-house

• This led us to finding Airflow

• After the POC, initiatives to shift 
our scheduling into Airflow were 
launched

• Production deployments 
followed in 2022 and 2023



77

Moving to Airflow: the challenges
Airflow at UniCredit

1. Understanding our own scheduling dependencies to be able to 
redefine and simplify them -> months of analytical work
2. Production environment requirements (eg. incident management 
requiring a mainframe task crash in the event of a Production failure)
3. Integration with overall IT landscape (other systems to continue using 
mainframe scheduling)
4. Understanding the concept of Airflow DAG dependencies – how to 
trigger a DAG upon another DAG's success?
5. Airflow resets DAGs after crash + restart, instead of resuming their 
execution – how to speed up failure recovery?
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The „main DAG” concept – our final solution
Airflow at UniCredit

Structure: one main DAG 
with multiple sub-DAGs

Scope: > 8k batch tasks 
executed daily
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The target solution - plugins
Airflow at UniCredit

•ResumeDagRunOperator - evolution of 
the TriggerDagRunOperator functionality

•DAG task search

•Static time predecessors

•Sensor to provide incident management 
(checks for failed tasks and crashes if any are detected)
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ResumeDagRunOperator
Airflow at UniCredit

Clearing sample_5 will restart the 
DagRun (rerunning 100 tasks) or raise 
a DagRunAlreadyExists error.

Clearing sample_5 will resume the 
DagRun (rerunning only 10 tasks).

Example: Our 100-task DAG 
sample_5 crashes at 90 tasks. To 
save time, it is better to resume the 
DAG run, rather than rerunning the 
whole scope.

Default solution Custom solution

● Restart 100/100
Restart 10/100
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Custom DateTimeSensor
Airflow at UniCredit

The customized DateTimeSensor lets us 
define offset_duration, specifying the period 
during which delta_days is decreased by 1.

Problem: the parent Airflow process is ran manually* at 9pm, while 
NY sub-tasks are scheduled for 1am. In case of a severe delay 
(eg. parent process starts at 3am), NY tasks would start on 1am of 
the next calendar day:

Solution: thanks to offset_duration, the 
custom DateTimeSensor allows dependencies to be met even in this 
scenario: NY tasks are triggered together with the parent.  

*the 
Airflow execution_date is t
he same 
as DagRun start_date 
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Task search through DAGs – new feature
Airflow at UniCredit

Problem: While debugging an application crash, the team has to quickly locate the 
DAG in which the failed task is located.

Solution: A new search option was added to the Airflow toolbar, allowing us to quickly 
locate tasks in our DAGs.

type and select a 
task id pattern

list of DAGs with 
given task 
appears

selected DAG 
will be open
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The target framework – a hybrid approach
Airflow at UniCredit

We combined Airflow and 
mainframe scheduling:
• Incident management via Airfl

ow task fail sensor 
(new feature)

• Downstream dependencies to 
other systems via mainframe
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What we gained
Airflow at UniCredit

• Automated testing (CI with Jenkins)

• Test capacity increased, enabling multiple runs per day across many environments

• Versioning (eg. possibility of defining branching strategies for parallel projects)

• Scheduling as code

• Scalability

• Task latency reduced from 10-60s to 3-10s

• Dependency visualization

• Block approach for tasks

• POC for Airflow in UniCredit - we're open to discuss best practices for usage at scale

• 4 main DAGs

• >250 sub DAGs

• 480 daily DAG runs

• ~8000  daily task 
runs
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Questions?

Reach us at:
Jan.Pawlowski@unicredit.eu

Jedrzej.Matuszak@unicredit.eu

mailto:Jan.Pawlowski@unicredit.eu
mailto:Jedrzej.Matuszak@unicredit.eu

