
A New
SQLAlchemyCollector
for Emitting Airflow
Lineage as DAGs Run

Michael Robinson, Community Manager at Astronomer

Michael Robinson

● Email: michael.robinson@astronomer.io
● LinkedIn: https://www.linkedin.com/in/michael-robinson/
● GitHub: https://github.com/merobi-hub
● Project PR: https://github.com/OpenLineage/OpenLineage/pull/2088

About Me

mailto:michael.robinson@astronomer.io
https://www.linkedin.com/in/michael-robinson/
https://github.com/merobi-hub
https://github.com/OpenLineage/OpenLineage/pull/2088

1. Why build a SQLAlchemy integration in OpenLineage?
2. SQLAlchemy

○ Background & design
3. SQLAlchemy ORM

○ Available metadata from database operations
4. OpenLineage-SQLAlchemy Integration Prototype

○ Design
○ Use cases
○ Implementation

5. Integration Output Examples

This Talk

Why?

By Screenshot, Fair use, https://en.wikipedia.org/w/index.php?curid=50047552

OpenLineage

OpenLineage

OpenLineage

SQLAlchemy

● First release: 2/6/2006
● Latest release: 20.0.20, 8/15/2023
● License: MIT
● Closed issues: 7266
● Closed PRs: 652
● Stars: 7.7k

SQLAlchemy

SQLAlchemy is the
Python SQL toolkit and
Object Relational
Mapper that gives
application developers
the full power and
flexibility of SQL.

It provides a full suite of well
known enterprise-level
persistence patterns,
designed for efficient and
high-performing database
access, adapted into a
simple and Pythonic domain
language.

● Architecture: Core + separate ORM
● Guiding philosophy:

○ expose the “R” in ORM
○ support abstraction but don’t enable mystification
○ the ORM is intentionally redundant for most use cases

SQLAlchemy

A relational database provides rich,
set-based functionality that should
be fully exposed. SQLAlchemy's
ORM provides an open-ended set of
patterns that allow a developer to
construct a custom mediation layer
between a domain model and a
relational schema, turning the
so-called "object relational
impedance" issue into a distant
memory.

With SQLAlchemy, there's no such
thing as "the ORM generated a bad
query" - you retain full control over
the structure of queries, including
how joins are organized, how
subqueries and correlation is used,
what columns are requested.
Everything SQLAlchemy does is
ultimately the result of a
developer-initiated decision.

Don't use an ORM if the problem
doesn't need one. SQLAlchemy
consists of a Core and separate
ORM component. The Core offers a
full SQL expression language that
allows Pythonic construction of SQL
constructs that render directly to SQL
strings for a target database,
returning result sets that are
essentially enhanced DBAPI cursors.

SQLAlchemy ORM

● Since SQLAlchemy 1.4, all ORM (Object Relational Mapper) mappings derive from a registry of
mapped classes.

● A common use case for the ORM is automating database operations.
● The ORM also offers event tracking capability through session events:

○ these Object Lifecycle Events track when objects are added, deleted or persisted in
sessions.

SQLAlchemy ORM

Object Lifecycle
Events
● after_bulk_update
● after_bulk_delete
● after_commit
● before_commit
● after_insert
● …

from sqlalchemy import event

@event.listens_for(SomeSessionClassOrObject, 'after_commit')
def receive_after_commit(session):
 "listen for the 'after_commit' event"

 # ... (event handling logic) ...

Some of the ORM metadata available

The ORM’s execute_state offers multiple hooks containing columns:
● all_orm_descriptors.items()
● attrs.items()
● column_attrs.items()
● columns

queries:
● statement

tables:
● tables

SQLAlchemy ORM

OpenLineage-
SQLAlchemy
Prototype

SQLAlchemyCollector and OpenLineageAdapter classes for:
1. listening for SQLAlchemy events using the SQLAlchemy ORM module

○ orm_execute_state.all_mappers include:
■ columns object
■ tables object

2. adapting the events to the OpenLineage spec with the OpenLineage Common Integration

OpenLineage-SQLAlchemy Prototype

○ Dataset
○ Run
○ RunEvent
○ RunState
○ Job
○ SqlJobFacet

OpenLineage Classes SQLAlchemy Hooks
inspect() allows us to get
tables and columns from
orm.execute.state.all_m

appers

● Apache Airflow testing and debugging
○ Metadata about internal database operations on xcom, task_instance, dag, and additional datasets

● Web application design and development
○ Web developer: new persona for OpenLineage+Marquez
○ Debugging: diagnose broken apps, identify compromised datasets, jobs
○ Database design? (enabled by static lineage capability, new in OpenLineage 1.0)

OpenLineage-SQLAlchemy Use Cases

Bottle
A lightweight, simple WSGI
framework in Python.
Reportedly plays well with
SQLAlchemy.

Flask
A micro Web framework
written in Python.
Flask-SQLAlchemy is a
commonly used backend.

Apache Airflow
Airflow™ is a platform to
programmatically author,
schedule and monitor
workflows.

● Developing, testing and debugging Apache Airflow internals
○ Start time, completion time, SQL queries, runstate, more
○ Lineage of datasets and jobs (WIP)
○ Metadata emitted about:

■ xcom
■ task_instance
■ rendered_task_instance
■ dag
■ serialized_dag
■ dag_owner_attributes
■ dag_run
■ dag_warning
■ import_error
■ job
■ log_template
■ slot_pool

OpenLineage-SQLAlchemy Use Cases

OpenLineage-SQLAlchemy Prototype Design

listener.collect_metadata() adapter.create_events()

listener.assemble_datasets()

after_transaction_create(session, transaction)

receive_do_orm_execute(orm_execute_state)

Airflow runtime metadata available from the integration include rendered SQL queries:

SELECT task_instance.try_number AS task_instance_try_number, task_instance.task_id AS task_instance_task_id, task_instance.dag_id
AS task_instance_dag_id, task_instance.run_id AS task_instance_run_id, task_instance.map_index AS task_instance_map_index,
task_instance.start_date AS task_instance_start_date, task_instance.end_date AS task_instance_end_date, task_instance.duration AS
task_instance_duration, task_instance.state AS task_instance_state, task_instance.max_tries AS task_instance_max_tries,
task_instance.hostname AS task_instance_hostname, task_instance.unixname AS task_instance_unixname, task_instance.job_id AS
task_instance_job_id, task_instance.pool AS task_instance_pool, task_instance.pool_slots AS task_instance_pool_slots,
task_instance.queue AS task_instance_queue, task_instance.priority_weight AS task_instance_priority_weight, task_instance.operator
AS task_instance_operator, task_instance.queued_dttm AS task_instance_queued_dttm, task_instance.queued_by_job_id AS
task_instance_queued_by_job_id, task_instance.pid AS task_instance_pid, task_instance.executor_config AS
task_instance_executor_config, task_instance.updated_at AS task_instance_updated_at, task_instance.external_executor_id AS
task_instance_external_executor_id, task_instance.trigger_id AS task_instance_trigger_id, task_instance.trigger_timeout AS
task_instance_trigger_timeout, task_instance.next_method AS task_instance_next_method, task_instance.next_kwargs AS
task_instance_next_kwargs, dag_run_1.state AS dag_run_1_state, dag_run_1.id AS dag_run_1_id, dag_run_1.dag_id AS dag_run_1_dag_id,
dag_run_1.queued_at AS dag_run_1_queued_at, dag_run_1.execution_date AS dag_run_1_execution_date, dag_run_1.start_date AS
dag_run_1_start_date, dag_run_1.end_date AS dag_run_1_end_date, dag_run_1.run_id AS dag_run_1_run_id, dag_run_1.creating_job_id AS
dag_run_1_creating_job_id, dag_run_1.external_trigger AS dag_run_1_external_trigger, dag_run_1.run_type AS dag_run_1_run_type,
dag_run_1.conf AS dag_run_1_conf, dag_run_1.data_interval_start AS dag_run_1_data_interval_start, dag_run_1.data_interval_end AS
dag_run_1_data_interval_end, dag_run_1.last_scheduling_decision AS dag_run_1_last_scheduling_decision, dag_run_1.dag_hash AS
dag_run_1_dag_hash, dag_run_1.log_template_id AS dag_run_1_log_template_id, dag_run_1.updated_at AS dag_run_1_updated_at …
FROM task_instance JOIN dag_run AS dag_run_1 ON dag_run_1.dag_id = task_instance.dag_id AND dag_run_1.run_id = task_instance.run_id
WHERE task_instance.dag_id = :dag_id_1 AND task_instance.run_id = :run_id_1 AND task_instance.task_id = :task_id_1 AND
task_instance.map_index = :map_index_1

OpenLineage-SQLAlchemy Production

task_instance

log_template

SELECT log_template.id AS log_template_id, log_template.filename AS log_template_filename, log_template.elasticsearch_id AS
log_template_elasticsearch_id, log_template.created_at AS log_template_created_at FROM log_template WHERE log_template.id = :pk_1

dag_run

SELECT dag_run.state AS dag_run_state, dag_run.id AS dag_run_id, dag_run.dag_id AS dag_run_dag_id, dag_run.queued_at AS
dag_run_queued_at, dag_run.execution_date AS dag_run_execution_date, dag_run.start_date AS dag_run_start_date, dag_run.end_date AS
dag_run_end_date, dag_run.run_id AS dag_run_run_id, dag_run.creating_job_id AS dag_run_creating_job_id, dag_run.external_trigger AS
dag_run_external_trigger, dag_run.run_type AS dag_run_run_type, dag_run.conf AS dag_run_conf, dag_run.data_interval_start AS
dag_run_data_interval_start, dag_run.data_interval_end AS dag_run_data_interval_end, dag_run.last_scheduling_decision AS
dag_run_last_scheduling_decision, dag_run.dag_hash AS dag_run_dag_hash, dag_run.log_template_id AS dag_run_log_template_id,
dag_run.updated_at AS dag_run_updated_at FROM dag_run WHERE dag_run.dag_id = :dag_id_1 AND dag_run.execution_date <
:execution_date_1 AND dag_run.state = :state_1 ORDER BY dag_run.execution_date DESC LIMIT :param_1

OpenLineage-SQLAlchemy Production

LogTemplate dataset columns

[('id', <ColumnProperty at 0xffffa0766a40; id>), ('filename', <ColumnProperty at 0xffffa05be640; filename>), ('elasticsearch_id',
<ColumnProperty at 0xffffa05be740; elasticsearch_id>), ('created_at', <ColumnProperty at 0xffffa05be840; created_at>)]

DagRun dataset columns

[('_state', <ColumnProperty at 0xffffa05be940; _state>), ('task_instances', <RelationshipProperty at 0xffffa06884c0;
task_instances>), ('dag_model', <RelationshipProperty at 0xffffa0688540; dag_model>), ('dag_run_note', <RelationshipProperty at
0xffffa06885c0; dag_run_note>), ('state', <SynonymProperty at 0xffffa05c29a0; state>), ('id', <ColumnProperty at 0xffffa05bea40;
id>), ('dag_id', <ColumnProperty at 0xffffa05beb40; dag_id>), ('queued_at', <ColumnProperty at 0xffffa05bec40; queued_at>),
('execution_date', <ColumnProperty at 0xffffa05bed40; execution_date>), ('start_date', <ColumnProperty at 0xffffa05bee40;
start_date>), ('end_date', <ColumnProperty at 0xffffa069c040; end_date>), ('run_id', <ColumnProperty at 0xffffa069c140; run_id>),
('creating_job_id', <ColumnProperty at 0xffffa069c240; creating_job_id>), ('external_trigger', <ColumnProperty at 0xffffa069c340;
external_trigger>), ('run_type', <ColumnProperty at 0xffffa069c440; run_type>), ('conf', <ColumnProperty at 0xffffa069c540; conf>),
('data_interval_start', <ColumnProperty at 0xffffa069c640; data_interval_start>), ('data_interval_end', <ColumnProperty at
0xffffa069c740; data_interval_end>), ('last_scheduling_decision', <ColumnProperty at 0xffffa069c840; last_scheduling_decision>),
('dag_hash', <ColumnProperty at 0xffffa069c940; dag_hash>), ('log_template_id', <ColumnProperty at 0xffffa069ca40;
log_template_id>), ('updated_at', <ColumnProperty at 0xffffa069cb40; updated_at>), ('consumed_dataset_events', <RelationshipProperty
at 0xffff9e2d49c0; consumed_dataset_events>), ('creating_job', <RelationshipProperty at 0xffff9e21fb40; creating_job>),
('serialized_dag', <RelationshipProperty at 0xffff9e21fbc0; serialized_dag>)]

OpenLineage-SQLAlchemy Production

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Integration Events Consumed by Marquez

Michael Robinson
● Community Manager, OpenLineage+Marquez Communities, Astronomer
● OpenLineage+Marquez committer
● Airflow contributor
● GitHub: https://github.com/merobi-hub

For more information about the integration, see the PR in OpenLineage:
● Project PR: https://github.com/OpenLineage/OpenLineage/pull/2088

Thank you

https://github.com/merobi-hub
https://github.com/OpenLineage/OpenLineage/pull/2088

(After) Party Under the Stars
Wednesday, September 20th
6:30pm-10:00pm

The Sheraton Centre
123 Queen St W
(7 min walk)

RSVP Now

Thursday, September 21st
12:00 pm in Trinity 4

