
Building and
deploying LLM
applications with
Apache Airflow

Kaxil Naik
Apache Airflow Committer & PMC Member
Director of Eng @ Astronomer

Julian LaNeve
Senior Product Manager @
Astronomer

Why Airflow should be at the centre of LLMOps?

Real Use-case & reference architecture

Next Steps: Community collaboration

Agenda

A powerful new class of large
language models is making it
possible for machines to
write, code, draw, and create
with credible and sometimes
superhuman results.

Generative AI:
A Creative New World

Normally, for ML, you need to…

Ingest Data Train Model Prediction

…but now you can

You hit a pre-trained model
instead of your own model

…but now you can:

Ingest Data Train Model Prediction

Less Data

■ Ingestion from several sources

■ Day 2 operations on data pipelines

■ Data preparation

■ Data privacy

■ Data freshness

■ Model deployment & monitoring

■ Scaling Models

■ Experimentation & fine-tuning

■ Feedback Loops

Going from “Idea to Production” with LLM Apps involves
solving a lot of data engineering problems:

Source: https://python.langchain.com/docs/use_cases/question_answering/

Typical Architecture for Q&A use-case using LLM

Legacy Data Store

Retrieval OutputStorageSplittingDocument Loading

Vectorstore

Database

PDFs

URLs

LLM <Answer>
Prompt

Splits

Relevant
Splits

Query
<Question>

Python Native
The language of data scientists and
ML engineers.

Pluggable Compute
GPUs, Kubernetes, EC2, VMs etc.

Common Interface
Between Data Engineering, Data
Science, ML Engineering and
Operations.

Data Agnostic

But data aware.

Extensible
Standardize custom operators and
templates for common DS tasks
across the organization.

Monitoring & Alerting
Built in features for logging,
monitoring and alerting to external
systems.

Ingestion
Extract and load data into
vectordbs and other destinations

Day 2 Ops
Handle retries, dependencies, and
all other day 2 ops associated with
data pipelines

Airflow is a Natural Fit…

Document Parsing
Decorator and pythonic interfaces
for standard LLM tools

Let’s Talk About a
Real Use Case

Problem Statement:

We have customers, employees, and community members
that ask questions about our product with answers that
exist across several sources of documentation.

How do we provide an easy interface for folks to
get their questions answered without adding
further strain to the team?

■ Airflow gives a framework to load data
from APIs & other sources into LangChain

■ LangChain helps pre-process and split
documents into smaller chunks
depending on content type

■ After content is split into chunks, each
chunk is embedded into vectors (semantic
representations)

■ Those vectors are written to Weaviate for
later retrieval

Data Ingestion, Processing, and Embedding

Embed chunks Write to Weaviate
Pre-process and split into

chunks

🦜🔗 LangChain

Docs (.md)
files

Slack
Messages

GitHub
issues

Docs (.md)
files

Users can interact with UI or
Slack Bot; they both use the

same API

■ Original prompt gets reworded 3x using gpt-3.5-turbo

■ Answer is generated by combining docs from each prompt
and making a gpt-4 call

■ State is stored in Firestore and prompt tracing is done through
LangSmith

🦜🔗LangChain

User Asks
a Question

Web App

Slack Bot

Original Prompt Rewording 2

Rewording 1

Rewording 3

Reword to get more
related documents

Vector DB search
with prompts

Combine docs
and make final

LLM call to
answer

🦜
🔗

Prompt Orchestration and Answering

■ Airflow DAGs process feedback async to evaluate answers on helpfulness,, relevance,
and publicness

■ If answer is good, it gets stored in Weaviate and can be used as a source for future
questions

■ UI also shows the most recent good prompts on the homepage

When a user submits feedback, it
gets stored in Firestore and

LangSmith for later use

User Rates
Answer 🦜

🔗

Fetch new runs: input,
output, and user feedback

Classify Q&A according
to helpfulness,

relevance, and public

🦜🔗 LangChain

If good answer, write to
vector DB to use in future

answers

If good answer, mark as
good to show on Ask Astro

homepage

On schedule

LLM & Product Feedback Loops

Running this in production meant:

■ Experimenting with different sources of data to ingest

■ Running the pipelines on a schedule and ad-hoc

■ Running the same workloads with variable chunking
strategies

■ Needing to retry tasks due to finicky python libraries and
unreliable external services

■ Giving different parts of the workload variable compute

■ Creating standard interfaces to interact with external
systems

■ Experimenting with different sources of data to ingest

■ Running the pipelines on a schedule and ad-hoc

■ Running the same workloads with variable chunking
strategies

■ Needing to retry tasks due to finicky python libraries and
unreliable external services

■ Giving different parts of the workload variable compute

■ Creating standard interfaces to interact with external
systems

Running this in production meant:

Which is
what

Airflow’s
great at!

ask.astronomer.io

github.com/astronomer/ask-astro

a16z’s Emerging LLM App Stack

Orchestration
(Python/DIY,
LangChain,

LlamaIndex,
ChatGPT)

APIs/Plugins
(Serp, Wolfram,

Zapier, etc.)

App Hosting
(Vercel, Steamship,

Streamlit, Modal)

Query

Output

Prompt
Few-shot
examples

Contextual
data

Playground
(OpenAI, nat.dev,

Humanloop)

Data Pipelines
(Databricks, Airflow,
Unstructured, etc.)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,

Chroma, pgvector)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,

Guidance, LMQL)

Proprietary API
(OpenAI, Anthropic)

Open API
(Hugging Face, Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

LLM APIs and Hosting

Gray boxes show key components of the stack, with leading tools /
systems listed. Arrows show the flow of data through the stack.

 Contextual data provided by app developers to condition
 LLM outputs

 Prompts and few-shot examples that are sent to the LLM

 Queries submitted by users

 Output returned to users

Legend

AskAstro has a few parts of this…

Orchestration
(Python/DIY,
LangChain,

LlamaIndex,
ChatGPT)

APIs/Plugins
(Serp, Wolfram,

Zapier, etc.)

App Hosting
(Vercel, Steamship,

Streamlit, Modal)

Query

Output

Prompt
Few-shot
examples

Contextual
data

Playground
(OpenAI, nat.dev,

Humanloop)

Data Pipelines
(Databricks, Airflow,
Unstructured, etc.)

Embedding Model
(OpenAI, Cohere,

Hugging Face)

Vector Database
(Pinecone, Weaviate,

Chroma, pgvector)

LLM Cache
(Redis, SQLite,

GPTCache)

Logging/LLMops
(Weights & Biases, MLflow,

PromptLayer, Helicone)

Validation
(Guardrails, Rebuff,

Guidance, LMQL)

Proprietary API
(OpenAI, Anthropic)

Open API
(Hugging Face, Replicate)

Opinionated Cloud
(Databricks, Anyscale,

Mosaic, Modal, Runpod)

Cloud Provider
(AWS, GCP, Azure,

Coreweave)

LLM APIs and Hosting

Gray boxes show key components of the stack, with leading tools /
systems listed. Arrows show the flow of data through the stack.

 Contextual data provided by app developers to condition
 LLM outputs

 Prompts and few-shot examples that are sent to the LLM

 Queries submitted by users

 Output returned to users

Legend

Airflow is
foundational

to best
practices for

all of this.

Data Governance
■ How do you account for private data?
■ How do you provide transparency into data lineage?

Fine Tuning
■ Does it improve results?
■ How much does it cost?

Feedback Loops
■ Semantic cache for correct responses
■ Ranking sources based on accuracy and ranking accordingly
■ Prompt clustering – what are people asking?

…but there’s even more to consider.

Michael GregoryPhilippe Gagnon

Thanks to the AskAstro Team:

Community Collaboration

Providers Interfaces Patterns and
Use Cases

What are all the providers the ecosystem needs?

pgvector

What’s the
interface that
feels right for
LLMOps?

What’s the
interface that
feels right for
LLMOps?

Patterns

What are the
best practices

for building
pipelines for
LLM Apps?

■ Do you use one task to ingest and write?

■ Can you use dynamic task mapping to break it out?

■ Do you write to disk?

■ Can you store embedding values in XCOMs?

■ How do you reconcile Airflow orchestration with
prompt orchestration?

Let’s do this all in the open source!

