Building and deploying LLM applications with Apache Airflow
Julian LaNeve
Senior Product Manager @ Astronomer

Kaxil Naik
Apache Airflow Committer & PMC Member
Director of Eng @ Astronomer
Agenda

Why Airflow should be at the centre of LLMOps?
Real Use-case & reference architecture
Next Steps: Community collaboration
Generative AI: A Creative New World

A powerful new class of large language models is making it possible for machines to write, code, draw, and create with credible and sometimes superhuman results.
Normally, for ML, you need to...

- Ingest Data
- Train Model
- Prediction
...but now you can:

- Ingest Data
- Train Model
- Prediction

You hit a pre-trained model instead of your own model.
Going from “Idea to Production” with LLM Apps involves solving a lot of data engineering problems:

- Ingestion from several sources
- Day 2 operations on data pipelines
- Data preparation
- Data privacy
- Data freshness
- Model deployment & monitoring
- Scaling Models
- Experimentation & fine-tuning
- Feedback Loops
Typical Architecture for Q&A use-case using LLM

- **Document Loading**
 - URLs
 - PDFs
 - Database

- **Splitting**
 - Splits

- **Storage**
 - Vectorstore

- **Retrieval**
 - Relevant Splits
 - Query `<Question>`

- **Output**
 - Prompt
 - LLM
 - `<Answer>`

Source: https://python.langchain.com/docs/use_cases/question_answering/
Airflow is a Natural Fit...

- **Python Native**: The language of data scientists and ML engineers.
- **Pluggable Compute**: GPUs, Kubernetes, EC2, VMs etc.
- **Monitoring & Alerting**: Built in features for logging, monitoring and alerting to external systems.
- **Common Interface**: Between Data Engineering, Data Science, ML Engineering and Operations.
- **Extensible**: Standardize custom operators and templates for common DS tasks across the organization.
- **Data Agnostic**: But data aware.
- **Ingestion**: Extract and load data into vectordbs and other destinations.
- **Day 2 Ops**: Handle retries, dependencies, and all other day 2 ops associated with data pipelines.
- **Document Parsing**: Decorator and pythonic interfaces for standard LLM tools.
Let’s Talk About a Real Use Case
Problem Statement:

We have customers, employees, and community members that ask questions about our product with answers that exist across several sources of documentation.

How do we provide an easy interface for folks to get their questions answered without adding further strain to the team?
Airflow gives a **framework to load data from** APIs & other sources into LangChain.

LangChain helps pre-process and **split documents into smaller chunks** depending on content type.

After content is split into chunks, each chunk is **embedded into vectors** (semantic representations).

Those vectors are **written to Weaviate** for later retrieval.
Users can interact with UI or Slack Bot; they both use the same API

- Original prompt gets reworded 3x using gpt-3.5-turbo
- Answer is generated by combining docs from each prompt and making a gpt-4 call
- State is stored in Firestore and prompt tracing is done through LangSmith
Airflow DAGs process feedback async to evaluate answers on helpfulness, relevance, and publicness.

If answer is good, it gets stored in Weaviate and can be used as a source for future questions.

UI also shows the most recent good prompts on the homepage.
Running this in production meant:

- Experimenting with different sources of data to ingest
- Running the pipelines on a schedule and ad-hoc
- Running the same workloads with variable chunking strategies
- Needing to retry tasks due to finicky python libraries and unreliable external services
- Giving different parts of the workload variable compute
- Creating standard interfaces to interact with external systems
Running this in production meant:

- Experimenting with different **sources of data to ingest**
- Running the pipelines on **a schedule and ad-hoc**
- Running the same workloads **with variable chunking strategies**
- Needing to **retry tasks** due to finicky python libraries and unreliable external services
- Giving different parts of the workload **variable compute**
- Creating standard interfaces to **interact with external systems**

Which is what Airflow’s great at!
a16z’s Emerging LLM App Stack

Gray boxes show key components of the stack, with leading tools / systems listed. Arrows show the flow of data through the stack:
- Contextual data provided by app developers to condition LLM outputs
- Prompts and few-shot examples that are sent to the LLM
- Queries submitted by users
- Output returned to users

Legend

Orchestration (Python/DIY, LangChain, LlamaIndex, ChatGPT)

Data Pipelines (Databricks, Airflow, Unstructured, etc.)

Embedding Model (OpenAI, Cohere, Hugging Face)

Vector Database (Pinecone, Weaviate, Chroma, pgvector)

APIs/Plugins (Serp, Wolfram, Zapier, etc.)

App Hosting (Vercel, Steamship, Streamlit, Modal)

Playground (OpenAI, nat.dev, Humanloop)

APIs/Plugins (Proprietary API, Open API, Opinionated Cloud, Cloud Provider, LLM APIs and Hosting)

Validation (Guardrails, Rebuff, Guidance, LMQL)

LLM Cache (Redis, SQLite, GPTCache)

Logging/LLMops (Weights & Biases, Mlflow, PromptLayer, Helicone)

Contextual data

Prompt Few-shot examples

Query

Output
AskAstro has a few parts of this...
Airflow is foundational to best practices for all of this.

...but there’s even more to consider.

Data Governance
- How do you account for private data?
- How do you provide transparency into data lineage?

Fine Tuning
- Does it improve results?
- How much does it cost?

Feedback Loops
- Semantic cache for correct responses
- Ranking sources based on accuracy and ranking accordingly
- Prompt clustering – what are people asking?
Thanks to the AskAstro Team:

Philippe Gagnon

Michael Gregory
Community Collaboration

Providers

Interfaces

Patterns and Use Cases
What are all the providers the ecosystem needs?

- Weaviate
- pgvector
- OpenAI
- Dolly
- Pinecone
What’s the interface that feels right for LLMOps?

create_embeddings = OpenAIEmbeddingOperator(
 task_id="create_embeddings",
 conn_id="openai_prod",
 source_data="/usr/local/airflow/dags/github.pdf",
 output_file="/usr/local/airflow/data/embeddings.txt",
 model="text-embedding-ada-002",
 encoding="cl100k_base",
)

store_embeddings = WeaviateOperator(
 task_id="check_schema",
 conn_id="weaviate_prod",
 embeddings="/usr/local/airflow/data/embeddings.txt",
)

LlmOperator(
 task_id="openai_task",
 embedding="OpenAI",
 source_dataset=Dataset("/usr/local/airflow/dags/data/github.pdf"),
 target_dataset=Index(uri="pgvector://postgres", name="airflow_summit_test"),
 embedding_params={
 "embedder_model": "text-embedding-ada-002",
 "encoding_name": "cl100k_base"
 },
)
What’s the interface that feels right for LLMOps?

```python
@task
def generate_and_store_embedding(data_path):
    import os

    from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

    assert os.environ["OPENAI_API_KEY"]
loader = PyPDFLoader(file_path=data_path)
pdf_docs = loader.load()
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=1000, chunk_overlap=200
)
documents = text_splitter.split_documents(pdf_docs)
Chroma.from_documents(documents=documents, embedding=OpenAIEmbeddings())
```
Patterns

What are the best practices for building pipelines for LLM Apps?

- Do you use one task to ingest and write?
- Can you use dynamic task mapping to break it out?
- Do you write to disk?
- Can you store embedding values in XCOMs?
- How do you reconcile Airflow orchestration with prompt orchestration?
Let’s do this all in the open source!