
Mastering
dependencies

The Airflow Way

Hi!

Jarek Potiuk

● Independent Open-Source Contributor and advisor

● Airflow Summit Organizer

● PMC Member & Committer Apache Airflow

● Member of the Apache Software Foundation

@jarekpotiuk

@potiuk

@jarekpotiuk

Dependency
Problem

Airflow ~80(!) PyPI packages

Airflow + Providers: 700 (!) dependencies

Installing problematic packages

Tooling

Dependency tools landscape
● pip
● pipx
● pipenv
● pip-tools
● poetry
● micropipenv
● tox
● conda
● bazel
● hatch
● flit
●

● setup.py
● setup.cfg
● requirements.txt
● Pipfile
● MANIFEST.in
● *.lock

One tool to rule them all (for Airflow at least)

pip

Don’t use anything else
(you’ve been warned)

Application or
library?

Apache Airflow is an application

Reproducible installs

● Airflow installation should work the same tomorrow and a year from now
○ pip install apache-airflow[amazon, google,kerberos]==2.6.1 ...

● February 7th, 2020 - the date to remember

Airflow is a library too

You can’t have cake and eat it too

Creator: ADRIANNAELKPHOTOGRAPHY Creator: Wallpaper Flare

Constraints

Airflow constraints

PIP constraints

● Constraints are NOT requirements

● Only supported by pip (so far)

● They allow to HAVE cake and EAT it too

○ Reproducible installation

○ AND ability to upgrade to different dependencies

● Hosted on Github

● Separate constraint set per Airflow version / Python version

● Can be updated after release (in exceptional cases)

Reproducible installation

Installing
Airflow + Providers

Installing Airflow from scratch (venv/containers)

● Primary use case for constraints

● Reproducible installation of Airflow in specific version (with Providers)

● Suitable for CI/CD pipeline

● DON’T install your own specific dependencies together

Installing other
dependencies

Adding new / update dependencies

● Separate step from installing Airflow

● DON’t use constraints

● It MAY upgrade or downgrade dependencies

● Use `apache-airflow==<version>` to keep it from accidental up/downgrade

No constraints

Keep your airflow version

Upgrading/downgrading providers?

● Same as other dependencies

● DON’t use constraints when you downgrade/upgrade providers

Upgrading
Airflow + Providers

Upgrading Airflow installation

● Handle full Upgrade scenarios

● Reproducible upgrade of Airflow WITH providers in specific version

● But you can add other dependencies after that

Custom
Docker image

Custom docker image
● slim image
● install providers
● add extra requirements

No constraints

Using your own
constraints

How to build your own constraints

● Install airflow + dependencies you need
● Run `pip check`
● and …

When all else
fails

Using different Python interpreters

● Launch new interpreter with different dependencies

● Choices:

○ PythonVirtualenvOperator - virtual environment created on the flight

○ ExternalPythonOperator - virtual environment pre-created (in the image for example)

Using Docker And Kubernetes Operators

● When conflict are at system dependencies level

● Cannot pass Python objects

● Might be able to use Airflow Public Interface (Same Airflow Version)

● Provides nice isolation

Q&A

Jarek Potiuk

Independent Open-Source Contributor and advisor

Airflow Summit Organizer

PMC Member & Committer Apache Airflow

Member of the Apache Software Foundation

@jarekpotiuk

@potiuk

@jarekpotiuk

Q&A

Mastering Dependencies: The Airflow Way

