
Nikolas (Niko) Oliveira

Airflow Executors
Past, Present and
Future

Who Am I?

● Apache Airflow committer

● Sr. software engineer at Amazon

○ Amazon Managed Workflows for Apache Airflow (MWAA)

○ Founding member of the Amazon Apache Airflow Open Source Team

● Spent much of the last year working on Airflow executors

Past: What is an Executor?

● Executors facilitate the running of Airflow tasks (Task Instances)

● The Airflow scheduler decides when a task should run and the executor
decides how.

● Examples: CeleryExecutor, KubernetesExecutor, LocalExecutor

● Runs within the Airflow scheduler process.

● Pluggable, kind of...

● There are many types of Airflow executors, but some major ones include:

○ Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

Past: What is an Executor?

● There are many types of Airflow executors, but some major ones include:

○ Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

○ Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where remote
workers pull tasks to execute. Often workers are persistent and run multiple tasks at once:
E.g.: CeleryExecutor

Past: What is an Executor?

● There are many types of Airflow executors, but some major ones include:

○ Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

○ Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where remote
workers pull tasks to execute. Often workers are persistent and run multiple tasks at once:
E.g.: CeleryExecutor

○ Remote Containerized Executors: Airflow tasks are executed ad hoc inside containers/pods.
Each task is isolated in its own environment. E.g.: KubernetesExecutor

Past: What is an Executor?

Past: What is an Executor?

● Airflow executors implement/inherit from the BaseExecutor class

○ This represents the public interface for executors

● It was always possible to write your own executor, however, there were
some issues:

○ This interface was not strictly public in the past

○ Many executor features/use cases were baked into Airflow core code rather than the
interface, we call this Executor Coupling

Past: Example of Executor Coupling

● This snippet is from
the Airflow Backfill
job.

● You can see the core
Airflow code is hard
coding executors, and
must know their
behaviour and
implementation

● How do we fix this?

Present: AIP-51 - Executor Decoupling

● AIP-51 - Described the instances of Executor Coupling in the Airflow code
base as well as proposals for how to fix them

● Community effort to implement the fixes for each source of coupling

● Many couplings were simple compatibility checks, but more interesting
instances included Executors vending CLI commands as well as Airflow task
logs

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-51+Removing+Executor+Coupling+from+Core+Airflow

Present: Example Executor Coupling Fix

● Pickling support is
now part of the
public BaseExecutor
interface

● Core code no longer
coupled to specific
executors and
interacts with a
known public API

Present: Executor Migration

● Now that the separation of Airflow executors from core Airflow is more
distinct, some executors that used to live within Airflow can be moved to
their own provider packages

● The CeleryExecutor and KubernetesExecutors:

○ These Executors were updated during the AIP-51 project to comply with the BaseExecutor
interface

○ They have since been moved out of Airflow core to their own providers (thanks Jarek!)

Present: Writing Your Own Executor

● Now that implementing an Airflow executor is more supported than ever, it’s
easy to write your own. So that’s what we did!

● Myself and some folks from the AWS OSS Airflow team, along with an initial
contribution from Ahmed Elzeiny (aelzeiny/airflow-aws-executors) have been
working on a new Airflow executor that leverages AWS technology

● https://github.com/apache/airflow/pull/34381

https://github.com/aelzeiny/airflow-aws-executors

● Implemented in Amazon
Provider Package,
leveraging the public
BaseExecutor interface

● Each task that Airflow
schedules for execution is
run within its own ECS
container

Present: ECS Executor

Future: More Executors!

● We have more executors on the horizon built on AWS technology that many
of you will be familiar with, including:

○ AWS Batch: Queued based executor with compute backed by ECS/EC2

○ Amazon EKS: Container based executor backed by Kubernetes/EKS

○ And more to come, stay tuned!

Future: Airflow Hybrid Execution
● Airflow Executors are easier to write, and more options are arriving now and in the

future, wouldn’t it be nice to leverage more than one executor at once?

● Each executor has its own pros and cons and committing to just one restricts the
capabilities of any one Airflow environment

● Hardcoded hybrid executors exist (e.g. CeleryKuberentesExecutor), but are not
ideal

● Expect an AIP in the near future proposing full native support for multiple
executors

Questions?

github.com/o-nikolas

linkedin.com/in/niko-oliveira-aws

