A 4
Airflow Executors v ‘

Past, Present and
Future
Nikolas (Niko) Oliveira A Airflow Summit

Let's flow together

September 19-21, 2023,
Toronto, Canada

Who Am |?

e Apache Airflow committer

e Sr. software engineer at Amazon

o Amazon Managed Workflows for Apache Airflow (MWAA)

o Founding member of the Amazon Apache Airflow Open Source Team

e Spent much of the last year working on Airflow executors

Past: What is an Executor?
e Executors facilitate the running of Airflow tasks (Task Instances)

e T[he Airflow scheduler decides when a task should run and the executor
decides how.

e Examples: CeleryExecutor, KuberneteskExecutor, LocalExecutor
e Runs within the Airflow scheduler process.

e Pluggable, kind of...

Past: What is an Executor?

e There are many types of Airflow executors, but some major ones include:

o Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

Past: What is an Executor?
e There are many types of Airflow executors, but some major ones include:

o Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

o Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where remote
workers pull tasks to execute. Often workers are persistent and run multiple tasks at once:
E.g.: CeleryExecutor

Past: What is an Executor?

e There are many types of Airflow executors, but some major ones include:

o Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

o Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where remote
workers pull tasks to execute. Often workers are persistent and run multiple tasks at once:
E.g.: CeleryExecutor

o Remote Containerized Executors: Airflow tasks are executed ad hoc inside containers/pods.
Each task is isolated in its own environment. E.g.: KubernetesExecutor

Past: What is an Executor?

e Airflow executors implement/inherit from the BaseExecutor class

o This represents the public interface for executors

e |t was always possible to write your own executor, however, there were
some issues:

o This interface was not strictly public in the past

o Many executor features/use cases were baked into Airflow core code rather than the
interface, we call this Executor Coupling

Past: Example of Executor Coupling

e This snippetis from
the Airflow Backfill

JOb. s if not self.donot_pickle and self.executor_class not in (
executor_constants.LOCAL EXECUTOR,

pickle_id = None

executor_constants L_EXECUTOR,

® You can see the core
Airflow code is hard

executor_constants.DAS

COding executors, and pick%e = [Ixa;;F’%l:‘kle(self.dag)
. session.add(pickle)

mUSt knOW thelr session.commit()

behaviour and pickle_id = pickle.id

implementation

executor = self.executor
executor.job_id = "backfill"

e How do we fix this? executor .start()

Present: AIP-51 - Executor Decoupling

e AIP-51 - Described the instances of Executor Coupling in the Airflow code
base as well as proposals for how to fix them

e Community effort to implement the fixes for each source of coupling

e Many couplings were simple compatibility checks, but more interesting
instances included Executors vending CLI commands as well as Airflow task
logs

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-51+Removing+Executor+Coupling+from+Core+Airflow

Present: Example Executor Coupling Fix

Pickling support is
now part of the
public BaseExecutor
interface

Core code no longer
coupled to specific
executors and
interacts with a
known public API

pickle_id = None

executor_class, _ = ExecutorlLoader.import_default_executor_cls

10t self.donot_pickle and executor_class.supports_pickling:
pickle = DagPickle(self.dag)

session.a

session.commit()

pickle_id = pickle.id

executor = self.job.executor
executor.job_id = self.job.id

executor.start()

Present: Executor Migration

e Now that the separation of Airflow executors from core Airflow is more
distinct, some executors that used to live within Airflow can be moved to

their own provider packages

e The CeleryExecutor and KuberneteskExecutors:

o These Executors were updated during the AIP-51 project to comply with the BaseExecutor
interface

o They have since been moved out of Airflow core to their own providers (thanks Jarek!)

Present: Writing Your Own Executor

e Now that implementing an Airflow executor is more supported than ever, it's
easy to write your own. So that's what we did!

e Mpyself and some folks from the AWS OSS Airflow team, along with an initial
contribution from Ahmed Elzeiny (aelzeiny/airflow-aws-executors) have been
working on a new Airflow executor that leverages AWS technology

e https://github.com/apache/airflow/pull/34381

https://github.com/aelzeiny/airflow-aws-executors

Present: ECS Executor

Implemented in Amazon
Provider Package,
leveraging the public
BaseExecutor interface

Each task that Airflow
schedules for execution is
run within its own ECS
container

Internet

Local/Private Airflow Network

PostgreSQLI

User

Amazon ECS API

E—
EE-

* ECS [luster

A Hosted Container Image
(ECR, Docker Hub, etc)

* Task Definition(s)

Airflow < > E‘
S
Airflow Meta Database
(PostgreSQL)
AAAAAAAAAAAAAAAAAAAAA | @—ﬁ\
ECS Executor

™

I&x] ~ ECS Cluster VPC I
* Public Subnet '

* Security Groupl

i [1=1]

ECS Fargate/EC2 Task(s)

Future: More Executors!

e \We have more executors on the horizon built on AWS technology that many
of you will be familiar with, including:

o AWS Batch: Queued based executor with compute backed by ECS/EC2
o Amazon EKS: Container based executor backed by Kubernetes/EKS

o And more to come, stay tuned!

Future: Airflow Hybrid Execution

e Airflow Executors are easier to write, and more options are arriving now and in the
future, wouldn't it be nice to leverage more than one executor at once?

e FEach executor has its own pros and cons and committing to just one restricts the
capabilities of any one Airflow environment

e Hardcoded hybrid executors exist (e.g. CeleryKuberentesExecutor), but are not
ideal

e Expectan AIP in the near future proposing full native support for multiple
executors

4

O github.com/o-nikolas

Questions?

m linkedin.com/in/niko-oliveira-aws

