
An
Introduction
to Airflow
Cluster
Policies

Philippe Gagnon
Airflow Summit 2023
Toronto, Canada

Agenda

• Your Speaker

• What are Cluster Policies?

• Available Policy Functions

• Use Cases

• Defining your policy functions

• Using the pluggy mechanism

Philippe Gagnon

• Senior Solutions Architect @
Astronomer, inc.

• Fancycron Enthusiast since
2017.

What are Cluster Policies?

• Cluster Policies 📜 are a set of functions Airflow administrators 👮
can define in their airflow_local_settings* module to perform
custom logic on a few important Airflow objects.

• They can either
• Mutate 🧟 the object they are applied on;

• or (for DAG or task policies), skip ⏭ ;

• or deny 🚫 a DAG from being added to the DagBag.

Available Policy Functions in Airflow

• dag_policy

• task_policy

• task_instance_mutation_hook

• pod_mutation_hook

• get_airflow_context_vars

High-level Overview

dag_policy

• Mutates DAG objects after they are
loaded in the DagBag.

• Runs after your DAG has been fully
generated.

• However, dag_policy is still applied
before task_policy.

• It also means that the DAG processor
parses all DAG files even if skipped or
denied.

task_policy

• Mutates tasks after they have been added to a
DAG.

• It receives a “BaseOperator” as an argument*
and can issue skip/deny exceptions.

* This is actually a bug, and we’ll see why later… 🤫

task_instance_mutation_hook

• Similar to task policies, but applies to TaskInstance objects.

• The main difference between these two functions is that, while
task policies mutate and inspect tasks “as defined”, task
instance policies mutate and inspect task instances before
they are executed.

pod_mutation_hook

• This is the original policy
function.

• It takes a Pod object as an
argument and can mutate it
before it is scheduled on a
Kubernetes cluster by Airflow.

• It is applied to Pod objects
generated by both
KubernetesPodOperator and
KubernetesExecutor. ✌

Defining your policy function

• Two methods: airflow_local_settings or via pluggy.

Using airflow_local_settings

• Create a module named airflow_local_settings and ensure it is
added on your sys.path.

• The module should contain functions that match one or more of the
policy functions defined in Airflow.

Using the pluggy interface

Since Airflow 2.6, a new policy
function configuration mechanism
exists.

Using the pluggy interface

from airflow.policies import
hookimpl
@hookimpl
def task_policy(task) -> None:
Mutate task in place # ...
print(f"Hello from {__file__}")

[build-system]
requires = ["setuptools",
"wheel"]
build-backend =
"setuptools.build_meta"
[project]
name = "my-airflow-plugin”
version = "0.0.1" # ...
dependencies = ["apache-
airflow>=2.6"] [project.entry-
points.'airflow.policy'] _ =
'my_airflow_plugin.policies'

Example Use Cases

• Ensuring DAGs are tagged

• Ensuring DAGs in development do not run in production

• Enforcing a task timeout

• Setting resource requests and limits

• Replacing an operator with its deferrable counterpart

• Using a different environment for different operators

Ensuring DAGs are tagged

def ensure_dags_are_tagged(dag: "DAG") -> None:
tag_labels = [tag.split(":")[0] for tag in dag.tags]
if not "Owner" in tag_labels:

raise AirflowClusterPolicyViolation(
f"{dag.dag_id} does not have a 'Owner' tag defined."

)
def dag_policy(dag: "DAG"):

ensure_dags_are_tagged(dag)

Ensuring DAGs in development do not run in
production

def ensure_no_dev_dags_in_production(dag: "DAG") -> None:
if not ”Maturity:Production" in dag.tags:

raise AirflowClusterPolicySkipDag(
f"Skipping DAG '{dag.dag_id}’ (missing

Maturity:Production tag)"
)

Enforcing a task timeout

def task_policy(task: "BaseOperator") -> None:
min_timeout = datetime.timedelta(hours=24)
if not task.execution_timeout or task.execution_timeout

> min_timeout:
raise AirflowClusterPolicyViolation(

f"{task.dag.dag_id}:{task.task_id} time out is
greater than {min_timeout}"

)

Setting resource requests and limits

def task_policy(task: "BaseOperator") -> None:
executor_config = {

"pod_override": k8s.V1Pod(
spec=k8s.V1PodSpec(

containers=[
k8s.V1Container(

name="base",
resources=k8s.V1ResourceRequirements(

requests={
"cpu": "100m",
"memory": "256Mi",

},
limits={

"cpu": "1000m",
"memory": "1Gi",

},
),

)
]

)
)

}

task.executor_config = executor_config

Setting resource requests and limits (2)

Replacing an operator with its deferrable
counterpart

def make_snowflake_operators_async(dag: "DAG") -> None:
from airflow.providers.snowflake.operators.snowflake import SnowflakeOperator
from astronomer.providers.snowflake.operators.snowflake import

SnowflakeOperatorAsync

for task_id, task in dag.task_dict.copy().items():
if isinstance(task, SnowflakeOperator):

task = SnowflakeOperatorAsync(
task_id=task.task_id,
sql=task.sql,
snowflake_conn_id=task.conn_id,
database=task.database,
return_last=task.return_last,

)
dag.task_dict["task_id"] = task

Using a different image depending on
operator

def task_policy(task: "BaseOperator") -> None:
from airflow.providers.apache.spark.operators.spark_submit import (

SparkSubmitOperator,
)

if isinstance(task, SparkSubmitOperator):
executor_config = {

"pod_override": k8s.V1Pod(
spec=k8s.V1PodSpec(

containers=[
k8s.V1Container(name="base", image="airflow-with-spark"),

]
)

)
}
task.executor_config = executor_config
task.doc = "⚠ Warning! This task has been mutated by your friendly Airflow admin!"

Retrying a task on a different queue

def task_instance_mutation_hook(task_instance:
TaskInstance):

if task_instance.try_number >= 3:
task_instance.queue = "big-machine"

Special Case: Mapped Operators

• may run into a problem because most
properties of MappedOperator are not
mutable.

• This isn’t generally a problem for
deny/skip policies, but it is for
mutations.

• Fortunately, there is a workaround.

• You can get past this with the
partial_kwargs, which is mutable.

def task_policy(task:
"BaseOperator") -> None:

doc_str = "⚠ Warning! This
task has been mutated by your
friendly Airflow admin!"

if isinstance(task,
MappedOperator):

task.partial_kwargs["doc"]
= doc_str

else:
task.doc = doc_str

Takeaways

• Airflow policy functions are a powerful ⚡ yet relatively unknown 🤫
feature available to Airflow cluster administrators.

• They are essential to a cluster administrator’s toolbox 🧰 to ensure
that your Airflow instances are governed properly.

• You should use them. 😉

• But try not to surprise your users! ⚠

Thank you

(After) Party Under the Stars
Wednesday, September 20th
6:30pm-10:00pm

The Sheraton Centre
123 Queen St W
(7 min walk)

RSVP Now

Thursday, September 21st
12:00 pm in Trinity 4

