Data Orchestration for
Emerging Technology
Analysis

Jennifer Melot

Outline

® \What is CSET/ETO

® Airflow at CSET
O Scholarly literature pipelines: handling long-running tasks
O Sequence of SQL DAGs: abstracting away Airflow

O Airtable DAGs: integrating human inputs

® |_essons learned

About CSET and ETO

® The Center for Security and Emerding Technology studies the security

implications of emerging technologies, including Al, advanced computing, and
biotech

O Core audience is policymakers, core themes are geopolitical

O Part of Georgetown University’s School of Foreign Service

® CSET’s Emerging Technology Observatory builds public data resources (tools,

visualizations, datasets) to inform critical decisions on emerging tech issues

http://eto.tech

Issue Brief

Governing Al with ove g A g A oritie
Existing Authorities
A Case Study in Commercial g 0 Da D 0
Aviation
- L]
Things we build: r ueston ity detses s ; -
-
o agencies ca e their e ga orities to go Al o e gove e eed
Reports e egal powe 0 manage the te olog ea ors argue that re go
e ga o) e e O erre e approa O pro O g e are aeveliop
©CSET Juy 2024 and deployment of A e at lea e near te eport o es a proce
0O a a g a) 0} a app 0O a g g

We write reports that are read by ere additional legislative or regulatory action may be needed
policymakers and others needing to
make decisions on emerging

technology-related issues. S oo o
Some of these reports draw on our '
2 C nt
data ho"dlngs Comm::::‘;ep::tmenf
RFI89FR27411 D ed e 10110 g 0O e espo e to a Reque) 0O atio

Airflow pipelines keep the tables used o e S bt Ao s
in these analyses up to date.

Eyes Wide Open 2 de Ope arne g the Remote Se g and Data

e e IS dustries to Enhance National Se

0 0 0 d 0

Things we build:
Web Applications

We build public tools (at eto.tech) to
help policymakers answer questions
about emerging technologies.

At right is sciencemap.eto.tech . It's
based on > 100M scholarly
publications and meant to help users
better understand the research
landscape.

Airflow pipelines move data from
BigQuery to Cloud SQL for use in
these applications.

MAPVIEW LIST VIEW SUMMARY VIEW @

No filters applied

Display unselected clusters

of @ on

CLEAR FILTERS APPLY FILTERS

v Subjects

or @ And
Subjects @

> Vital signs

> Countries and organizations

> Patents and industry

> Advanced filters

@ What am | looking at? +

@ Color key ~

HioExe @

Summary of 85,643 visible
clusters @

Articles in last five
years: 25,968,533
Average article age: 13.6

Al relevant: 5.58%
Industry-affiliated: 2%
U.S.-affiliated: 16.29%
China-affiliated: 20.36%

DETAILED SUMMARY

Cluster ID: 48056
Research field: computer
science

Key concepts: support vector
machine, incremental learning
algorithm, incremental support
vector, online SVM learning, vector
machine learning

Articles in last five years: 115
Average article age: 13.76 years
Growth rating: 18.4

Citation rating: 42.12

Al relevant: 55.75%
Industry-affiliated: 2.14%
U.S.-affiliated: 9.57%
China-affiliated: 45.22%

Click on the cluster to see more
details

Data team structure

® ~14-person team (out of 60+ person organization)
® 3 Data Research Analysts

O Direct support to non-coder research analysts
® 3 Data Scientists + NLP Engineer
O Expertise in particular datasets
O Dataset maintenance and data augmentation projects
® 1 Software Engineer + Technical Lead
O Data pipeline maintenance and development
O Web application development
® Other staff: translation lead, ETO analytic lead, survey specialist, director and
deputy director of data science

Airflow at CS

Airflow at CSET

® 93 dags running in Cloud Composer (Google Cloud Platform’s managed
Airflow)

® Used since 2020
® Generated tables often range from 100s of millions to billions of records

® Tasks range from ETL to model deployment to long-running tasks like linkage
and clustering

Working with scholarly
literature: long-running
tasks

Ingesting + Augmenting Scholarly Literature

® CSET provides analysis based on bibliometric data

O E.g. which companies are producing the most Al-related research

® Updating bibliometric data involves running several DAGs:
O ETL from vendors
O Linking articles across sources + aggregating canonical metadata
O Running classifiers

O Clustering articles

g k.ol sy e fmc ol sty

s vioer i corater ———+ i clscfer P —» 300 aniv chafr coenMx — . CasaTer coendex —+ 110s 3 saty DRGKlonG Mrature —» 3 sabypeckions Mertire
Somanic scho updtir ————— WU A IIKAG0 P ———— a0 ItkaGR PN —————+ VGO ORL TN —————+ ONING ———+ GO DuK O G Updiler —» DK O GF GPO Q¢ /0o AN MAtACO LGN —+ A (e MEAKIGLS LpCIer ~— oger o skmamc. g updstsr — @ . mansc s usse
N T g claton peceries ———— chiton perentios
5 -+ gtk et et Irkagn 4 sk, mehod brkmge
> o tase and et contober % task et et conteber

T ogerson ————————t o

® Most DAGs involve using BigQuery operators to run large analytic queries
® Most validation happens with BigQueryCheckOperators
® \We use Google Cloud Storage to store intermediate files

® \We use Dataflow operators to run inference using custom models and to do
data cleaning

® \We run custom Python code using Kubernetes Engine operators

Challenges with long-running tasks

® \We sometimes use BashOperators to run commands over ssh on VMs with
large amounts of memory

® |f we do nothing to avoid it, we'll sometimes see this after several days

[2024-07-06, 04:03:29 UTC] {job.py:213} ERROR - Job heartbeat got an exception
Traceback (most recent call last):

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 3371, in _wrap_pool_connect
return fn()

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/pool/base.py", line 327, in connect
return _ConnectionFairy._checkout(self)

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/pool/base.py", line 894, in _checkout
fairy = _ConnectionRecord.checkout(pool)

File "/opt/python3.8/1ib/python3.8/site-packages/sqlalchemy/pool/base.py", line 493, in checkout
rec = pool._do_get()

Challenges with long-running tasks

® \We sometimes use BashOperators to run commands over ssh on VMs with

large amounts of memory

® |f we do nothing to avoid it, we'll sometimes see this after several days

[2024-07-06, 04:03:29 UTC] {job.py:213} ERROR - Job heartbeat got an exception
Traceback (most recent call last):

Fij

Fij

sqlalchemy.exc.OperationalError: (psycopg2.0perationalError) connection to server at "airflow-
This probably means the server terminated abnormally
before or while processing the request.

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/pool/base.py", line 894, in _checkout

fairy = _ConnectionRecord.checkout(pool)

File "/opt/python3.8/1ib/python3.8/site-packages/sqlalchemy/pool/base.py", line 493, in checkout

rec = pool._do_get()

Workaround: Sensors

® \We now:

O Run long-running tasks in the background on the remote VM

O Upload an empty file to a particular location on Google Cloud Storage when the task has
completed

O A GCSObjectExistenceSensor waits for that file to appear and allows the DAG to proceed once it
is present

® Downsides: clunky, have to ssh to the VM to view logs

Abstracting away Airflow

Airflow has a learning curve...

® | ots of enthusiasm among data team members for learning Airflow
® Not everyone focuses on building data pipelines

® Common use case - automate this sequence of sql queries, update
documentation, back tables up

|/

Generating “Sequence of SQL" DAG

® \We provide a script that configures:

O A directory of SQL queries
O A file that specifies query order
O A directory of SQL data checks
O A directory of schemas with column-level documentation
O A file update script
® New “Sequence of SQL” DAGs are dynamically generated from these inputs

O Astronomer documentation on this

https://www.astronomer.io/docs/learn/dynamically-generating-dags

Finding DAG
configurations

We look in a “sequence directory” for

CSVs containing sequences of queries.

We use the names of these files to
configure a DAG that will run those
queries.

We then insert that dag into the
global namespace.

if os.path.exists(sequence_dir):
for fi in os.listdir(sequence_dir):
if not fi.endswith(sequence_filename_suffix):
continue
dagname = fi.replace(sequence_filename_suffix, "")
globals() [dagname] = create_dag(dagname)

def create_dag(dag_name: str) -> DAG:

-
Ge n e ratl n DAGS Creates a dag to write the tables specified in a sequence file named dag_name.csv
:param dag_name: name of the dag

ireturn: dag that produces the tables in dag_name.csv

dag = DAG(dag_name,

Within the DAG, We open a CsSVv default_args=get_default_args(),
9.0 l. d description=f"table updates for {dag_name}",
Contalnlng Sq query names an schedule_interval=None)
names of production datasets where WL degs .
start = DummyOperator(task_id="start")
those queries should eventually write prev = start

the|r tables. lines = retrieve_uncommented_lines(f"{sequence_dir}/{dag_name}{sequence_filename_suffix}")
production_tables = []
for line in csv.DictReader(lines):

We run each of these queries in series, next = BigQueryInsertJobOperator(
5N o task_id=" te_"+line["table_ .5
writing the resulting tables to a cz:fi;ura:;::; I
"query": {

staging dataset, and then run checks,
copy to production, and so on. "useLegacySql": False,

"destinationTable": {
"projectId": PROJECT_ID,
"datasetId": f"staging_{dag_name}",
"tableId": line["table_name"]

"query": "{% include '"+f"sql/{dag_name}/{line['table_name'l}.sql"+""' %}",

h

"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE"

Using “Sequence of SQL" DAGs

® Benefits: no knowledge of Airflow required, boilerplate DAGs reduced

® Downsides: several components need configuration, some find this a bit
overwhelming/confusing

® Data ETL

O Each table can be ingested with a separate DAG on separate schedules with custom configuration

® \Webscraping
O We write our webscrapers to have a standard structure - a scraper script and a parser script

O We dynamically generate our webscraper DAGs from config files pointing to these scripts

® |[ntegrating human data annotation

Working with human
inputs from Airtable

Airtable + Airflow

® Several of our workflows include analysts and work something like this:
O A set of records are placed in Airtable (either manually or via an Airflow pipeline)
O Humans clean and/or add additional metadata to these records

O We ingest records that are complete back into BigQuery on a regular basis

Airtable + Airflow

® \We dynamically generate dags for BigQuery to Airtable and Airtable to
BigQuery workflows: https://aithub.com/georgetown-cset/airtable-etl

® Users write config files and sgl queries to configure which tables are imported
and the output table schemas

® The resulting DAGs are triggered from other DAGs that need to interact with
Airtable, or are scheduled

https://github.com/georgetown-cset/airtable-etl

Example: updating manual ER

® Our raw data contains multiple variants of organization names

O e.g. “International Business Machines Corporation” and “IBM (United States)”

® \Various solutions in progress

O Research Organization Registry (https://ror.org/)

O Internal model-based ER effort

® |[n the meantime, we try to manually clean up the “worst offenders”

https://ror.org/

Example: updating manual ER

® \We add “worst offender” (by number of affiliated papers or other metrics)
organizations to an Airtable base
® An Airflow pipeline pulls orgs with “reviewed” checked on a weekly basis and

updates a BigQuery table
® Cleaned organizations are available for e.g. our metadata merge DAG

D ® Help QD sh

¢3 Manual OrgERFixes v Data Automations Interfaces Forms
Organizations v v + Add or import Ext
= Views E5 Input 52 v & Hide fields = Filter [= Group 11 Sort & Color =1 [7 Share and sync
O A A fi A fi = <
Q Find a view & name M MV final_name v final_country A reviewed N
1 UBS Optimus Foundation UBS Switzerland v
B Input <))
2 Bial Foundation BIAL Portugal v
B2 Allfields . i . X L
3 Gavi, the Vaccine Alliance Gavi Multinational v

Lessons Learned

® Originally a data engineering team of 1, and then we evolved

O Assigning responsibility for addressing e.g. vendor schema updates

O Important to give the rest of the data team visibility into task failures and lineage
® Special consideration needed for long-running tasks

® Dynamically generating DAGs is a big help

O Keeps code DRY

O Helps team members generate DAGs without having to learn Airflow

Questions?

jennifer.melot@georgetown.edu

