
Data Orchestration for 
Emerging Technology 
Analysis
Jennifer Melot



Outline

●What is CSET/ETO

●Airflow at CSET

○ Scholarly literature pipelines: handling long-running tasks

○ Sequence of SQL DAGs: abstracting away Airflow

○ Airtable DAGs: integrating human inputs

● Lessons learned

2



About CSET and ETO

●The Center for Security and Emerging Technology studies the security 
implications of emerging technologies, including AI, advanced computing, and 
biotech

○ Core audience is policymakers, core themes are geopolitical

○ Part of Georgetown University’s School of Foreign Service

●CSET’s Emerging Technology Observatory builds public data resources (tools, 
visualizations, datasets) to inform critical decisions on emerging tech issues

3

http://eto.tech


Things we build: 
Reports

We write reports that are read by 
policymakers and others needing to 
make decisions on emerging 
technology-related issues.

Some of these reports draw on our 
data holdings. 

Airflow pipelines keep the tables used 
in these analyses up to date.

4



Things we build: 
Web Applications

We build public tools (at eto.tech) to 
help policymakers answer questions 
about emerging technologies.

At right is sciencemap.eto.tech . It’s 
based on > 100M scholarly 
publications and meant to help users 
better understand the research 
landscape. 

Airflow pipelines move data from 
BigQuery to Cloud SQL for use in 
these applications.

5



Data team structure

●~14-person team (out of 60+ person organization)
●3 Data Research Analysts

○ Direct support to non-coder research analysts

●3 Data Scientists + NLP Engineer
○ Expertise in particular datasets
○ Dataset maintenance and data augmentation projects

●1 Software Engineer + Technical Lead
○ Data pipeline maintenance and development
○ Web application development

●Other staff: translation lead, ETO analytic lead, survey specialist, director and 
deputy director of data science

6



Airflow at CSET
7



Airflow at CSET

●93 dags running in Cloud Composer (Google Cloud Platform’s managed 
Airflow)

●Used since 2020

●Generated tables often range from 100s of millions to billions of records

●Tasks range from ETL to model deployment to long-running tasks like linkage 
and clustering

8



Working with scholarly 
literature: long-running 
tasks

9



Ingesting + Augmenting Scholarly Literature

●CSET provides analysis based on bibliometric data

○ E.g. which companies are producing the most AI-related research 

●Updating bibliometric data involves running several DAGs:

○ ETL from vendors

○ Linking articles across sources + aggregating canonical metadata

○ Running classifiers

○ Clustering articles

10



Ingesting + Augmenting Scholarly Literature

●Most DAGs involve using BigQuery operators to run large analytic queries

●Most validation happens with BigQueryCheckOperators

●We use Google Cloud Storage to store intermediate files

●We use Dataflow operators to run inference using custom models and to do 
data cleaning

●We run custom Python code using Kubernetes Engine operators

11



Challenges with long-running tasks

●We sometimes use BashOperators to run commands over ssh on VMs with 
large amounts of memory

● If we do nothing to avoid it, we’ll sometimes see this after several days

12



Challenges with long-running tasks

●We sometimes use BashOperators to run commands over ssh on VMs with 
large amounts of memory

● If we do nothing to avoid it, we’ll sometimes see this after several days

13



Workaround: Sensors

●We now: 

○ Run long-running tasks in the background on the remote VM

○ Upload an empty file to a particular location on Google Cloud Storage when the task has 
completed 

○ A GCSObjectExistenceSensor waits for that file to appear and allows the DAG to proceed once it 
is present

●Downsides: clunky, have to ssh to the VM to view logs

14



Abstracting away Airflow

15



Airflow has a learning curve…

● Lots of enthusiasm among data team members for learning Airflow

●Not everyone focuses on building data pipelines

●Common use case - automate this sequence of sql queries, update 
documentation, back tables up

16



Generating “Sequence of SQL” DAGs

●We provide a script that configures:

○ A directory of SQL queries

○ A file that specifies query order

○ A directory of SQL data checks

○ A directory of schemas with column-level documentation

○ A file update script

●New “Sequence of SQL” DAGs are dynamically generated from these inputs

○ Astronomer documentation on this

17

https://www.astronomer.io/docs/learn/dynamically-generating-dags


Finding DAG 
configurations

We look in a “sequence directory” for 
CSVs containing sequences of queries.

We use the names of these files to 
configure a DAG that will run those 
queries.

We then insert that dag into the 
global namespace.

18



Generating DAGs
Within the DAG, we open a CSV 
containing sql query names and 
names of production datasets where 
those queries should eventually write 
their tables.

We run each of these queries in series, 
writing the resulting tables to a 
staging dataset, and then run checks, 
copy to production, and so on.

19



Using “Sequence of SQL” DAGs

●Benefits: no knowledge of Airflow required, boilerplate DAGs reduced

●Downsides: several components need configuration, some find this a bit 
overwhelming/confusing

20



Other dynamic DAG generation use cases

●Data ETL

○ Each table can be ingested with a separate DAG on separate schedules with custom configuration

●Webscraping

○ We write our webscrapers to have a standard structure - a scraper script and a parser script

○ We dynamically generate our webscraper DAGs from config files pointing to these scripts

● Integrating human data annotation

21



Working with human 
inputs from Airtable

22



Airtable + Airflow

●Several of our workflows include analysts and work something like this:

○ A set of records are placed in Airtable (either manually or via an Airflow pipeline)

○ Humans clean and/or add additional metadata to these records

○ We ingest records that are complete back into BigQuery on a regular basis

23



Airtable + Airflow

●We dynamically generate dags for BigQuery to Airtable and Airtable to 
BigQuery workflows: https://github.com/georgetown-cset/airtable-etl 

●Users write config files and sql queries to configure which tables are imported 
and the output table schemas

●The resulting DAGs are triggered from other DAGs that need to interact with 
Airtable, or are scheduled

24

https://github.com/georgetown-cset/airtable-etl


Example: updating manual ER

●Our raw data contains multiple variants of organization names

○ e.g. “International Business Machines Corporation” and “IBM (United States)”

●Various solutions in progress

○ Research Organization Registry (https://ror.org/)

○ Internal model-based ER effort 

● In the meantime, we try to manually clean up the “worst offenders”

25

https://ror.org/


Example: updating manual ER

●We add “worst offender” (by number of affiliated papers or other metrics) 
organizations to an Airtable base

●An Airflow pipeline pulls orgs with “reviewed” checked on a weekly basis and 
updates a BigQuery table

●Cleaned organizations are available for e.g. our metadata merge DAG

26



Lessons Learned

27



Lessons Learned

●Originally a data engineering team of 1, and then we evolved

○ Assigning responsibility for addressing e.g. vendor schema updates

○ Important to give the rest of the data team visibility into task failures and lineage

●Special consideration needed for long-running tasks

●Dynamically generating DAGs is a big help

○ Keeps code DRY

○ Helps team members generate DAGs without having to learn Airflow

28



Questions?

jennifer.melot@georgetown.edu


