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® \What is CSET/ETO

® Airflow at CSET
O Scholarly literature pipelines: handling long-running tasks
O Sequence of SQL DAGs: abstracting away Airflow

O Airtable DAGs: integrating human inputs

® |_essons learned



About CSET and ETO

® The Center for Security and Emerding Technology studies the security

implications of emerging technologies, including Al, advanced computing, and
biotech

O Core audience is policymakers, core themes are geopolitical

O Part of Georgetown University’s School of Foreign Service

® CSET’s Emerging Technology Observatory builds public data resources (tools,

visualizations, datasets) to inform critical decisions on emerging tech issues


http://eto.tech
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Things we build:
Web Applications

We build public tools (at eto.tech) to
help policymakers answer questions
about emerging technologies.

At right is sciencemap.eto.tech . It's
based on > 100M scholarly
publications and meant to help users
better understand the research
landscape.

Airflow pipelines move data from
BigQuery to Cloud SQL for use in
these applications.
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Research field: computer
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Data team structure

® ~14-person team (out of 60+ person organization)
® 3 Data Research Analysts

O Direct support to non-coder research analysts
® 3 Data Scientists + NLP Engineer
O Expertise in particular datasets
O Dataset maintenance and data augmentation projects
® 1 Software Engineer + Technical Lead
O Data pipeline maintenance and development
O Web application development
® Other staff: translation lead, ETO analytic lead, survey specialist, director and
deputy director of data science



Airflow at CS




Airflow at CSET

® 93 dags running in Cloud Composer (Google Cloud Platform’s managed
Airflow)

® Used since 2020
® Generated tables often range from 100s of millions to billions of records

® Tasks range from ETL to model deployment to long-running tasks like linkage
and clustering



Working with scholarly
literature: long-running
tasks



Ingesting + Augmenting Scholarly Literature

® CSET provides analysis based on bibliometric data

O E.g. which companies are producing the most Al-related research

® Updating bibliometric data involves running several DAGs:
O ETL from vendors
O Linking articles across sources + aggregating canonical metadata
O Running classifiers

O Clustering articles
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® Most DAGs involve using BigQuery operators to run large analytic queries
® Most validation happens with BigQueryCheckOperators
® \We use Google Cloud Storage to store intermediate files

® \We use Dataflow operators to run inference using custom models and to do
data cleaning

® \We run custom Python code using Kubernetes Engine operators



Challenges with long-running tasks

® \We sometimes use BashOperators to run commands over ssh on VMs with
large amounts of memory

® |f we do nothing to avoid it, we'll sometimes see this after several days

[2024-07-06, 04:03:29 UTC] {job.py:213} ERROR - Job heartbeat got an exception
Traceback (most recent call last):

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 3371, in _wrap_pool_connect
return fn()

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/pool/base.py", line 327, in connect
return _ConnectionFairy._checkout(self)

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/pool/base.py", line 894, in _checkout
fairy = _ConnectionRecord.checkout(pool)

File "/opt/python3.8/1ib/python3.8/site-packages/sqlalchemy/pool/base.py", line 493, in checkout
rec = pool._do_get()




Challenges with long-running tasks

® \We sometimes use BashOperators to run commands over ssh on VMs with

large amounts of memory

® |f we do nothing to avoid it, we'll sometimes see this after several days

[2024-07-06, 04:03:29 UTC] {job.py:213} ERROR - Job heartbeat got an exception
Traceback (most recent call last):

Fij

Fij

sqlalchemy.exc.OperationalError: (psycopg2.0perationalError) connection to server at "airflow-
This probably means the server terminated abnormally
before or while processing the request.

File "/opt/python3.8/1lib/python3.8/site-packages/sqlalchemy/pool/base.py", line 894, in _checkout

fairy = _ConnectionRecord.checkout(pool)

File "/opt/python3.8/1ib/python3.8/site-packages/sqlalchemy/pool/base.py", line 493, in checkout

rec = pool._do_get()




Workaround: Sensors

® \We now:

O Run long-running tasks in the background on the remote VM

O Upload an empty file to a particular location on Google Cloud Storage when the task has
completed

O A GCSObjectExistenceSensor waits for that file to appear and allows the DAG to proceed once it
is present

® Downsides: clunky, have to ssh to the VM to view logs



Abstracting away Airflow



Airflow has a learning curve...

® | ots of enthusiasm among data team members for learning Airflow
® Not everyone focuses on building data pipelines

® Common use case - automate this sequence of sql queries, update
documentation, back tables up



|/

Generating “Sequence of SQL" DAG

® \We provide a script that configures:

O A directory of SQL queries
O A file that specifies query order
O A directory of SQL data checks
O A directory of schemas with column-level documentation
O A file update script
® New “Sequence of SQL” DAGs are dynamically generated from these inputs

O Astronomer documentation on this



https://www.astronomer.io/docs/learn/dynamically-generating-dags

Finding DAG
configurations

We look in a “sequence directory” for

CSVs containing sequences of queries.

We use the names of these files to
configure a DAG that will run those
queries.

We then insert that dag into the
global namespace.

if os.path.exists(sequence_dir):
for fi in os.listdir(sequence_dir):
if not fi.endswith(sequence_filename_suffix):
continue
dagname = fi.replace(sequence_filename_suffix, "")
globals() [dagname] = create_dag(dagname)



def create_dag(dag_name: str) -> DAG:

-
Ge n e ratl n DAGS Creates a dag to write the tables specified in a sequence file named dag_name.csv
:param dag_name: name of the dag

ireturn: dag that produces the tables in dag_name.csv

dag = DAG(dag_name,

Within the DAG, We open a CsSVv default_args=get_default_args(),
9.0 l. d description=f"table updates for {dag_name}",
Contalnlng Sq query names an schedule_interval=None)
names of production datasets where WL degs .
start = DummyOperator(task_id="start")
those queries should eventually write prev = start

the|r tables. lines = retrieve_uncommented_lines(f"{sequence_dir}/{dag_name}{sequence_filename_suffix}")
production_tables = []
for line in csv.DictReader(lines):

We run each of these queries in series, next = BigQueryInsertJobOperator(
5N o task_id=" te_"+line["table_ .5
writing the resulting tables to a cz:fi;ura:;::; I
"query": {

staging dataset, and then run checks,
copy to production, and so on. "useLegacySql": False,

"destinationTable": {
"projectId": PROJECT_ID,
"datasetId": f"staging_{dag_name}",
"tableId": line["table_name"]

"query": "{% include '"+f"sql/{dag_name}/{line['table_name'l}.sql"+""' %}",

h

"allowLargeResults": True,
"createDisposition": "CREATE_IF_NEEDED",
"writeDisposition": "WRITE_TRUNCATE"




Using “Sequence of SQL" DAGs

® Benefits: no knowledge of Airflow required, boilerplate DAGs reduced

® Downsides: several components need configuration, some find this a bit
overwhelming/confusing



® Data ETL

O Each table can be ingested with a separate DAG on separate schedules with custom configuration

® \Webscraping
O We write our webscrapers to have a standard structure - a scraper script and a parser script

O We dynamically generate our webscraper DAGs from config files pointing to these scripts

® |[ntegrating human data annotation



Working with human
inputs from Airtable



Airtable + Airflow

® Several of our workflows include analysts and work something like this:
O A set of records are placed in Airtable (either manually or via an Airflow pipeline)
O Humans clean and/or add additional metadata to these records

O We ingest records that are complete back into BigQuery on a regular basis



Airtable + Airflow

® \We dynamically generate dags for BigQuery to Airtable and Airtable to
BigQuery workflows: https://aithub.com/georgetown-cset/airtable-etl

® Users write config files and sgl queries to configure which tables are imported
and the output table schemas

® The resulting DAGs are triggered from other DAGs that need to interact with
Airtable, or are scheduled


https://github.com/georgetown-cset/airtable-etl

Example: updating manual ER

® Our raw data contains multiple variants of organization names

O e.g. “International Business Machines Corporation” and “IBM (United States)”

® \Various solutions in progress

O Research Organization Registry (https://ror.org/)

O Internal model-based ER effort

® |[n the meantime, we try to manually clean up the “worst offenders”


https://ror.org/

Example: updating manual ER

® \We add “worst offender” (by number of affiliated papers or other metrics)
organizations to an Airtable base
® An Airflow pipeline pulls orgs with “reviewed” checked on a weekly basis and

updates a BigQuery table
® Cleaned organizations are available for e.g. our metadata merge DAG

D ® Help QD sh

¢3 Manual OrgERFixes v  Data Automations  Interfaces Forms
Organizations v v + Add or import Ext
= Views E5 Input 52 v & Hide fields = Filter  [= Group 11 Sort & Color =1 [7 Share and sync
O A A fi A fi = <
Q Find a view & name M MV final_name v final_country A reviewed N
1 UBS Optimus Foundation UBS Switzerland v
B Input < ) )
2 Bial Foundation BIAL Portugal v
B2 Allfields . i . X L
3 Gavi, the Vaccine Alliance Gavi Multinational v






Lessons Learned

® Originally a data engineering team of 1, and then we evolved

O Assigning responsibility for addressing e.g. vendor schema updates

O Important to give the rest of the data team visibility into task failures and lineage
® Special consideration needed for long-running tasks

® Dynamically generating DAGs is a big help

O Keeps code DRY

O Helps team members generate DAGs without having to learn Airflow



Questions?

jennifer.melot@georgetown.edu



