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What is MLOps?
- MLOps

Machine Learning
& Operations

K

Processes \

25% 25%
ML Business

The combination of people, processes, and
technology to productionize ML solutions
efficiently.
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Productivity Reproducibility Reliability Observability Lower TCO
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MLOps Foundation &

SEPARATION OF CONCERNS IS KEY FOR SUCCESS
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Prepare, combine and catalogue Data Data Engineers Data Owners  Business Stakeholders
Visualize data ML Consumers
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Airflow as the Orchestrator

OUT OF THE BOX FEATURES TO AID MLOPS

Advanced

N Macros & Jinja ee -o Dynamic Task = o’ .
Templates scaae?jﬁ:]g s:o- Mapping III! TaskFlow API E Lineage
— Provider . — Automatic , ,
;—: Packages ((( Backfills K() Retries * Task Group @ Airflow Plugins
# Setupand SN Dynamic DS Toolkit & IDE Monitoring &
E-j Teardown (\' KBRS @ Compute el Integration Alerting
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Generative Al & Foundation Model
Ops/Large Language Model Ops




What is Generative Al?

Al

Generative Al

Foundation Models
Pre-trained Generative Al
Models based on trillions of
data for broad spectrum of
tasks

Large Language Models
Pre-trained Generative Al Models to
understand and generate/predict
human-like text
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Generative Al overview
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YV

YV

FMs

Broad range of
general tasks

Adapt

YV

.

Text generation

Summarization

Information extraction

Chatbot

LLMs

Broad range of
specific tasks




Generative Al User Types & Skills

“ S
“canbealso A
Generative Al Fine-Tuners Consumers
User Types
Entities who pre-train FMs Customize (e.g. fine-tune) Interact with Generative Al
from scratch themselves and providers' pre-trained FMs services from provider or fine-
provide them as a product to with their own data and run tuner by text prompting or
fine-tuner and consumer. inference, while provide access visual interface to complete
to consumers. desired actions.
Deep end-to-end ML, NLP Strong end-to-end ML expertise and No ML expertise required. Focus
expertise and data science, domain knowledge for tuning on prompt engineering and
. labeler “squad"”. including prompt engineering. retrieval augmented generation.
Skills
Productionize large models Productionize applications
leveraging ML & Operations (FMOps) leveraging Generative Al &
Operations
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Generative Al Processes —

| \

Select, evaluate, & use FM as Inputs/Outputs & Rating .| .
"o = || a black-box & adapt context —— Interaction with the Generative Al
[ -« Using multiple chained models and Solutions. Aim to improve outcomes
— prompt engineering techniques to achieve by penalizing or rewarding Generative
context adaptation (if necessary). Expose Al solution outputs providing insights
the solution to the end users for prompt engineering
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Generative Al Processes for LLM -

& &
aih G
Generative Al Developers & Prompt Engineers/Testers DevOps/AppDevs
l l
Backend Front-end

New Test Set

; g @

L 1ol |

3. Test & SC')L'lpti/ Develop & Input/ Output |
1. Select FM Tes.t Prompt —UtP Deploy Web & Rating WebUI

lineage Filtering & Application Interaction © o
(input & outputs) Guardrails PP S5 WD EPIRERIEL
rate the quality of

output

Test

6. Rating

Mechanisms

(thumbs up/down,
rating, text)

4. Chain
Prompts &
Applications

2. Prompt

Functionality
Engineering

LLM-based Generative Al Solution
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Model/Prompt Selection
— Model Selection ~

[ Sp?ed }

[ Precision Cost ]

\_ J

/— Automatic evaluation N\ ~~—  Human evaluation —

/ £

@ ﬁ h & Creativity Style Tone
7
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Accuracy Robustness Toxicity Relevance  Coherence Brand voice
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Model/Prompt Evaluation with Airflow

Evaluate :
Ref
._{ Results el J
LLM 1
Inference
oo \ 4
’ BN Context Pr°T"pt P|:omp-t Sl Rank Visualize
— Retrieval Engineering Results
Document LLM 2
Store Inference
-
Evaluate Notify
Results
_
LLM 3
Inference
Offload
A 4 \ 4
Prompt Template External CPU
Compute
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e Batch Inferencing with Airflow

( Repeat for

L each sources

1.

I

Inference 1
Results
v LLM 1
E — )\ Context menpt Pf°mp.t [ETEEE 2 Integrate Store —
— Retrieval Engineering Results
— A
Document LLM 2
Store Retrieval
Augmented
Generation Inference 3
Results
LLM 3
Offload
A 4 A 4 \ 4
Prompt Template External External CPU
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RAG Data Ingestion with Airflow

A' -
( i Data ingestion job

N1

( Repeat for 1
l L each sources J‘
oo
o i
—_— ——{ Extract H Transform H Chunking J—v 4{ Em\lgifjtccl)irngs H Emt?::z::ﬁngs }
o,
New data Document store Embeddings model
\ 4
Offload
v
. iy
External CPU Ve(:tor store
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Generative Al Processes -

Freopeadi I,
o :
. N
& g 2%
° ° ° i
Data Labeling Fine-tune Deployment & Monitor
a L3 L3 a
Human in the loop to label Customization for Prompt Engineering Human in the loop
thousands, or hundreds of specific domains Trade-off between cost, feedback/rating, result
data precision, & latency similarities, toxicity rate,
A Chain of models new methods under
Prompt designing and research
engineering
Filtering input prompts and
results using embeddings
18
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Generative Al Processes for LLM -

& &
i G
Generative Al Developers & Prompt Engineers/Testers DevOps/AppDevs
Backend Front-end
New Test Set
> ' GG
5. Input S
1.Select FM . 3. TPest & Out||::)>ut/ Develop & Input/ Output .
or Use Fine- ef;‘ne;(;r:pt Filtering & Deploy Web & Rating )|
tuned Mode (input & outputs) Guardrails Application Interaction Urséigvteht:a aqpup;lliictiltic?fn
output

Create User
Profile & Share

: , Data
Engineering Applications (thumbs up/down,

rating, text)
Fine-tune Personalized Models
Fine-tune FM using Adapters
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4. Chain 6. Rating Test
2. Prompt Prompts & Mechanisms Functionality

LLM-based Generative Al Solution
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Fine-tuning PEFT (LoRA or QLoRA) with Airflow

N1

Training job [ Repeat per J \
epoch
Model Pre-trained FM —>
Hub
o A 4
e - C te . N
o® Prepare Download Frie;e pC';e Add new l:vcjfaunk Checkpoint & Quantization, Deploy
iy dataset weights NS weights . . Calculate loss Normalization
p— atase 9 weights 9 weight matrix
Custom /
dataset
Pypi
Offload
A 4 v
R _ A
=P
Z@N
Training Settings External GPU/CPU
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Generative Al Processes -

PRE-TRAINING AN FM IS NOT A TRIVIAL TASK

[ N/
] <
I A\
- 2%
Massive Data —— Weeks to Months ——— Deployment —1 5 Leaderboards
Labeling of Training Deploy proprietary FMs or FM are being evaluated by
Open Source the model artifact A S GG ET TR el
Human in the loop to label Distribute the train of the and code party org
trillions of data Foundation Models (optional)
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Encoder/Decoder Transformation Model

HIGH LEVEL IMPLEMENTATION

i

encocer output

t

feed-forward

feed-forward . ’ 6 attention

masked
self-attention self-attention

input layer | input layer

input layer hidden layer 1 hidden layer 2 output layer
M2 NPEANOCHNSANEN CTaNLMK <start>

encoder decoder

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. S 0 u rce °
N


https://arxiv.org/abs/1706.03762

Generative Al & MLOps
MLOps & FMOps/LLMOps Differentiators




Foundation model lifecycle

Conventional ML paradigm

Monitoring / iterations

! |

Task-specific Model N
. roIZcre(:;in . model . validation & . E@ . Y /
P g training testing ’y
Task-specific Task-specific
model(s) deployment
Generative Al paradigm <
']
’ *
De lo'ment Application
ptoy integration
» [ N © |
Internet-size data Foundation )
model 4
_©O . 4 4
O @ Model providers Task-specific
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FMOps Foundation

SEPARATION OF CONCERNS IS KEY FOR SUCCESS

m <
5
<.
S o
5 O
3 5
M
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Ingest data E&(S B&‘&

Prepare, combine and catalogue Data Data Engineers Data Owners Business Stakeholders Data
Visualize data ML Consumers Labelers / Editors

S 8 L2Qq
Application Geném Pm&mpt 5 ﬁé’&%

AppDev "
Developers  Engineers /Testers Generative Al
End-users




MLOps/FMOps/LLMOps

Machine learning operations Foundation model operations
MLOps

Productionize ML solutions ps Productionize generative Al solutions
efficiently (text-text/image/video/audio/...)

Large lanquage model operations

LLMOps Productionize large language
model-based solutions
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Differences between MLOps and FMOps

MLOps

consumers

the FM on a Specific Context
fficient fine-tuning, prompt engineering
based on the application

Fine-tuned Models
management, toxicity/bias...

loyment
ancy, & cost, latency, and precision

& application layers
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MLOps & FMOps Differentiators
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Processes & People
Providers, fine-tuners, & consumers

Select & Customize the FM on a Specific Context
- Fine-tuning, parameter-efficient fine-tuning, prompt engineering
- Proprietary, open source based on the application

Evaluate & Monitor Fine-tuned Models
Human feedback, prompt management, toxicity/bias...

Data & Model Deployment

Data privacy, multi-tenancy, & cost, latency, and precision

Technology
MLOps, data, & application layers



Orchestration with Apache Airflow

Apache

Airflow

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workflows as Code

Dynamic, Extensible & Flexible
Data and Compute Agnostic

Scalability & Reliability
Rich Ecosystem
Community Driven

Continuous Innovation



Generative Al & Operations Resources

E.I-

#:4 Scaling Al Workloads with Apache Airflow
‘r« FMOps/LLMOps: Operationalize generative Al and differences with MLOps

Operationalize LLM Evaluation at Scale using Amazon SageMaker Clarify and MLOps services

Build an internal Saa$S service with cost and usage tracking for foundation models on Amazon Bedrock
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https://aws.amazon.com/blogs/machine-learning/fmops-llmops-operationalize-generative-ai-and-differences-with-mlops

Session Survey

_ https://pulse.aws/survey/UUNNEDF8

Questions ?



I ha n k ou' [wreree] Please complete the session
® 1 survey in the mobile app
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