
dbt-Core & Airflow 101:
Building Data Pipelines
Demystified

Luan Moreno
Sr. Cloud Consultant at Pythian

Quick Survey
Get a sense of people in the audience

1. Who here uses dbt-Core?
2. Who knows or uses Astronomer Cosmos?

3

dbt 101
The basics of data build tool

4

Airflow & dbt Core
High level comparison

● Python based for authoring, scheduling &
monitoring workflows.

● Flexible and can be used for different scenarios
and use-cases with a wider range of tasks.

● Complex interface and requires deeper
understanding of workflow management to
write SQL transformations.

● SQL based focused specifically on
transforming and analyzing data.

● Specialized and provides a more focused set
of features and tools for working with data in
a data warehouse.

● Simple interface for working with data and
SQL transformations.

How to run dbt-Core
projects in Apache
Airflow?

https://github.com/astronomer/astronomer-cosmos

Astronomer Cosmos 101
Run your dbt Core project as Airflow DAGs with fewer lines of code

basic_cosmos_dag = DbtDag(

dbt/cosmos-specific parameters

project_config=ProjectConfig(

DBT_ROOT_PATH / "jaffle_shop",

),

profile_config=profile_config,

operator_args={

"install_deps": True, # install any necessary dependencies before running any dbt command

"full_refresh": True, # used only in dbt commands that support this flag

},

normal dag parameters

schedule_interval="@daily",

start_date=datetime(2023, 1, 1),

catchup=False,

dag_id="basic_cosmos_dag",

default_args={"retries": 2},

)

● dags = folder where DAGs are authored and stored.
● dbt/project-name = dbt project under Airflow structure

Airflow & dbt Project
The structure of your dbt project under Apache Airflow umbrella

dbt Project

Airflow DAG

● build DAGs that interacts with the dbt Project.

● New on v1.6 {August} you can turn your dbt project agnostic
● Leverage the manifest.json stored in a GCS, Blob Storage & S3

News from the press!

Astronomer Cosmos 101
Seamless integration between the products

Astronomer Cosmos
FeaturesThe goodies of running dbt-Core projects with Airflow

DAGs in a Pythonic Way
The power of TaskFlow API & Task Group with
dbt
DBT_PROJECT_PATH = f"{os.environ['AIRFLOW_HOME']}/dags/dbt/my_simple_dbt_project"

DBT_EXECUTABLE_PATH = f"{os.environ['AIRFLOW_HOME']}/dbt_venv/bin/dbt"

profile_config = ProfileConfig(

profile_name="default",

target_name="dev",

profile_mapping=PostgresUserPasswordProfileMapping(conn_id=CONNECTION_ID, profile_args={"schema":SCHEMA_NAME}))

execution_config = ExecutionConfig(dbt_executable_path=DBT_EXECUTABLE_PATH,)

@dag(

start_date=datetime(2023, 8, 1),

)

def my_simple_dbt_dag():

transform_data = DbtTaskGroup(

group_id="transform_data",

project_config=ProjectConfig(DBT_PROJECT_PATH),

profile_config=profile_config,

execution_config=execution_config,

operator_args={"vars": '{"my_name": {{ params.my_name }} }',},

default_args={"retries": 2},

)

What about the Best
practices?

https://github.com/astronomer/astronomer-cosmos

Key Takeaway 1: Execution Modes
Understand which execution mode is better for your project

● The default method and fastest way
● Do not install dbt, assumes a dbt binary is reachable (dbt_executable_path)
● Starting in v1.4, it tries to leverage the dbt partial parsing (partial_parse.msgpack

local

● Isolates Airflow worker dependencies from dbt by managing a VirtualEnv during task execution
● Drawback: It's slower than local execution but it runs in a isolated manner

virtualenv

● Assumes a pre-created Docker image which contains the dbt pipelines and profile.yml
● Drawback: It's slower than virtualenv execution

Docker

● Very isolated way since dbt run commands from within a K8S pod, normally in separate host
● Container has up-to-date dbt pipelines and profiles
● Drawback: Time to spin up a Kubernetes Pod may take a while

Kubernetes

Key Takeaway 2: Parsing Methods
Several options in how to parse a dbt project

● Tries to find a user supplied manifest.json if not, it will run a dbt ls, if fails use Cosmos' dbt parser
● This is the default method

automatic

● Parses the user-supplied manifest.json, generated manually or through CI/CD
pipelines

● Benefit: Generate the complete set of metadata for your models
● Drawback: Generating the manifest.json

dbt_manifest

● Parses the dbt project using the dbt ls command. Cosmos generates the manifest file
● Benefit: uses the metadata and dbt select/excluding logic turning to be the most robust method
● Drawback: requires the dbt executable to be installed
● Cached in a Airflow variable {v.15}

dbt_ls

● New in v.1.3, path to the file containing the dbt ls output, use the dbt ls --output json

dbt_ls_file

● If the above methods fail, Cosmos will default to using its own dbt parser. This parser is not as robust as dbt’s, so it’s
recommended that you use one of the above methods if possible.

custom

File Path Runtime Type

cosmos_dag.py 6.53s without manifest.json

cosmos_dag.py 0.35s with manifest.json

Cosmos v.1.3

http://cosmos_dag.py/
http://cosmos_dag.py/

Do you want to
know more?

Integrating dbt with Airflow: Overcoming performance hurdles
By Tatiana Al-Chueyr Martins & Pankaj Koti
Track: Airflow & ...
Room: California West

Wednesday, September 11, 2024

https://airflowsummit.org/program/

Questions?

https://www.linkedin.com/in/luanmoreno/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

