
Airflow Summit
2024

A deep dive into Airflow
Configuration options for

scalability

Ephraim Anierobi
Senior Software Engineer at Astronomer

Committer & PMC member at Apache Airflow
Airflow Core Release Manager

Airflow Configuration

Customizes Airflow’s behavior to meet specific
operational needs.

Where to set the configuration:
❏ airflow.cfg: The main configuration file for Airflow.
❏ Environment Variables: Override configuration

settings

Configuration areas:
❏ core, scheduler, database, executors(celery,

kubernetes), logging etc

Why Configuration matters

❏ Optimizes Resource Utilization
❏ Proper configuration ensures efficient use of CPU,

memory, and other resources.

❏ Enhances Performance
❏ Fine-tuning settings like parallelism, max_tis_per_query,

and executor type can significantly improve task execution
speed.

❏ Supports Scalability
❏ As your data pipelines become more complex, properly

configuring Airflow ensures that it can handle the increased
workload smoothly and efficiently.

How to set Airflow configurations

airflow.cfg Environment Variables
AIRFLOW__CORE__DAGS_FOLDER=path/to/your/dags/folder

To make troubleshooting easier, it's best to clear the default values in
the airflow.cfg file. Keep only the settings that are different from the
defaults in the file. This way, it's easier to see what has been
customized and identify any potential issues.

Important performance-related
configurations

[scheduler]max_dagruns_per_loop_to_s

chedule

[scheduler]schedule_after_task_executi

on

[scheduler] file_parsing_sort_mode

[scheduler] min_file_process_interval

[scheduler] dag_dir_list_interval

[scheduler] pool_metrics_interval

[core] parallelism

[core] max_tis_per_query

[core] max_active_runs_per_dag

[core] max_active_task_per_dag

[core] default_pool_task_slot_count

[scheduler] use_row_level_locking

[scheduler] max_dagruns_per_loop

[core] parallelism
Maximum number of task instances that can run

concurrently per scheduler, regardless of the
worker count

About [core] parallelism

Determines the total running/queued tasks in an Airflow
deployment.

Scheduler count affects the overall concurrency.

If parallelism is 32 and you have 2 schedulers, the
total task instances that can run in the deployment
is 64

Unlimited Parallelism

[core] parallelism = 0

Desirable when using kubernetes executor and you donʼt know the optimal

parallelism for the cluster.

[scheduler]
max_tis_per_query

Maximum number of task instances to
examine ‘for scheduling/queuing’ in each

scheduler loop

Usages of [scheduler] max_tis_per_query
in code

➔ For 1 scheduler with parallelism = 32

◆ The default(16) is not bad for max_tis_per_query

[core] parallelism & [core] max_tis_per_query

➔ If parallelism is 200:
◆ 1 scheduler => 150(max_tis_per_query)
◆ 2 scheduler => 250…300(max_tis_per_query)

More on [core] max_tis_per_query

Too high a value can result in the scheduler not heartbeating on
time.

SQL Query predicate could become complex with excessive
locking which would impact your database

[core] default_pool_task_slot_count

Limits the execution parallelism of your tasks regardless of
your parallelism setting or scheduler count.

The default pool slot count can only be increased through the UI,
CLI or REST API in an existing deployment

You can create your own pools

[scheduler] schedule_after_task_execution

(mini scheduler)

Schedules downstream tasks of a task after the task’s execution.

Makes same DAG to execute fast in the expense of other DAGs.

A bit about the scheduler loop

Does a SELECT .. FOR UPDATE query on DagModels, DagRuns,
and TaskInstances before performing actions on them

- Locks DagModel to create dagruns
- Locks DagRun to move it to running, schedule its

taskinstances or check the succes/failure
- Locks TaskInstances before sending them to executors

Runs timed events that are checked at regular intervals.

Scheduler HA Running Multiple
Schedulers)

[scheduler] use_row_level_locking: Should the scheduler lock queries for
updates. Ensure that this is set to True(default) for HA.

Set [scheduler] max_dagruns_to_create_per_loop lower to distribute work
across the schedulers

Also set [scheduler] max_dagruns_per_loop_to_schedule low for the same
reason above

Timed events in the scheduler

❏ orphaned_tasks_check_interval: No harm in not detecting
this for a while.

❏ trigger_timeout_check_interval: If you are not using
triggers, set this to a high value.

❏ pool_metrics_interval: Set this to match your StatsD
roll-up period.

❏ parsing_cleanup_interval: If you baked your DAG into
the image or not using datasets, you can set this
real high.

DAG Parsing

[scheduler] dag_dir_list_interval 5mins If you are not adding new DAG files often, this
should be set high and if DAG is baked in image, set this very high

[scheduler] min_file_process_interval: Setting this low increases CPU usage.

[scheduler] file_parsing_sort_mode : For HA mode and not using standalone dag
processor, random_seeded_by_host is preferred. Other modes: modified_time,
alphabetical

[scheduler] parsing_processes : You can have more than two parsing processes

Thank you!
Any questions?

