
Optimize Your Dags:
Embrace Dag Params for
Efficiency and Simplicity

Sumit Maheshwari
PMC Apache Airflow, Tech Lead at Uber
Ex - Twitter, Astronomer, Qubole

DAG Params, what?

● Part of Airflow since the beginning

● Major rework done in 2021

● Support type checking, range validations, mandate inputs, etc

● Trigger DAG UI to generate a full fledged form on the basis of params

2

Example DAG - Before 2.2.0

3

dag = DAG(
 dag_id='generate_report',
 start_date=datetime(2024, 1, 1),
 default_args=default_args,
 schedule_interval=None,
 params={
 "city_code": "<Enter City Code>",
 "start_time": "<Enter Start Time>",
 "end_time": "<Enter End Time>",
 }
)

Example DAG.. Continued

4

dag = DAG(
 dag_id='generate_report',
 start_date=datetime(2024, 1, 1),
 default_args=default_args,
 schedule_interval=None,
 params={
 "city_code": "SFO",
 "start_time": "2024-01-01 00:00:00",
 "end_time": "2024-02-01 00:00:00",
 }
)

Example DAG.. Continued
Can you guess, how it’ll behave?

Requirements

● Must
○ Ensure backward compatibility.

○ Support default values and multiple types (int, bool, str, etc.).

○ Allow validation options (min/max, length, regex).

○ Maintain consistent behavior across UI, CLI, and API.

● Good to have:
○ UI should display input controls based on param type, showing required fields and defaults.

○ For params with options, UI can display lists or live pattern matching.

Proposal

● Create a Param class for use in the params dictionary

● It should store a default value and validation rules.

● Include a method to validate and resolve the value (default or user-provided).

● Ensure easy serialization/deserialization for database use.

● It should work with both traditional and decorator-based DAG creation.

Approaches

pydantic

One of the fastest* Python libraries to
provide data & type validations.

● Easy to implement

● Easy to extend

● Repeated work

● Painful modifications

https://pydantic-docs.helpmanual.io/

Approaches

attrs

attrs simplifies writing classes and
also exposes various in-build
validators & pre-post init methods.

● Easy to implement

● Easy to extend

● Repeated work

● Painful modifications

https://pypi.org/project/attrs/

Approaches

json-schema

json-schema has a very powerful & extensive way to define properties (validations) on a
field in a language-agnostic way. It has implementation libs in almost all major
languages & provides very extensive validations.

● json-schema is being used in DAG serialization already

● Plenty of OOB rules/validations to suffice major use-cases

● Can use it’s JS framework to validate data on UI

● Complex rules can overwhelm users

https://json-schema.org/understanding-json-schema/
https://json-schema.org/implementations.html

Airflow 2.2.0 - Welcome DAG Params

● Based on json-schema

● In-drop replacement of existing params dictionary

● Fully backward compatible

● Supports multiple types like string, int, bool, list, and many more

● Supports regex, making it useful for variety of use-cases

● Supports pre-defined validation formats like uri, date-time, email, hostname,

ipv4/6, etc

https://json-schema.org/

Airflow 2.2.0 - Example Dag
DAG(
 dag_id='generate_report',
 start_date=datetime(2024, 1, 1),
 default_args=default_args,
 schedule_interval=None,
 params={
 "city_code": Param(type="string", minLength=3, maxLength=3),
 "start_time": Param("2024-01-01 00:00:00", type="string", format="date-time"),
 "end_time": Param("2024-02-01 00:00:00", type="string", format="date-time"),
 }
)

2.6.0
Initial version of new DAG trigger UI

2.6.3
Fix rendering empty list, decimal vs integer

2.7.0
Skip trigger button, Multi-Select, Labels on drop-downs, Non
string arrays, Fix JSON propagation

2.7.2
Fix render “0” default, None values

2.8.2
pre-population of trigger form values via URL parameters

Trigger UI Revamp Journey

Special thanks to:

- jscheffl
- techolga
- herlambang
- SamWheating
- MatthieuBlais

- bbovenzi
- ryanahamilton
- hussein-awala
- jedcunningham

https://github.com/jscheffl
https://github.com/techolga
https://github.com/herlambang
https://github.com/SamWheating
https://github.com/MatthieuBlais
https://github.com/bbovenzi
https://github.com/ryanahamilton
https://github.com/hussein-awala
https://github.com/jedcunningham

Airflow 2.8+ - Example Dag
DAG(
 dag_id='generate_report',
 start_date=datetime(2024, 1, 1),
 default_args=default_args,
 schedule_interval=None,
 params={
 "city_code": Param(
 type="string",
 enum=["SFO", "NYC", "WDC", "CHI", "BLR", "MUM"],
 title="Select a City",
 description="Please select a city code to generate report",
),
 "start_time": Param("2024-01-01 00:00:00",
 type="string",
 format="date-time",
 title="Start Time",
 description="Start time for the report generation (in UTC)"
),
 "end_time": Param("2024-02-01 00:00:00",
 type="string",
 format="date-time",
 title="End Time",
 description="End time for the report generation (in UTC)"
),
 }
)

Latest Airflow
- Mandatory vs non-mandatory fields

- Various types, int, decimal, string,

bool, list, dict

- Length checks, value checks

- Date-time picker

- Type ahead suggestions

- Json forms

- Multi-selects

- Selection box with option labels

- Quick select prev run conf

Future
- Possibility to extend Params class into custom params classes

class MyCustomParam(Param):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 # Custom initialization logic

 def resolve(self, value: Any = NOTSET, suppress_exception: bool = False) -> Any:
 # Custom logic to resolve the value

Questions?

@sumitmaheshwari

maheshwarisumit

