
Overcoming
Custom Python
Package Hurdles in
Airflow
Amogh Rajesh Desai

Shubham Raj

About Us

2

● Senior Software Engineer at Cloudera
○ Cloudera Data Engineering on Private

Cloud
● Apache Airflow Committer

○ Contributing since 2023
○ Breeze
○ Helm Charts
○ CNCF, Hive Providers

● Coffee Connoisseur
● Loves Sports and Outdoor

● Software Engineer II at Cloudera
○ Cloudera Data Engineering on Private

Cloud
● Apache Airflow Contributor
● Spoke at Airflow Summit 2023 and local

summits
● Published author with a book chapter in

Scrivener Publishing - Wiley
● Loves playing badminton and cricket

Context

• Cloudera Data Engineering
• Airflow on Kubernetes

– Kubernetes Executor
• Multiple Airflow instances
• One per Team
• Teams share DAG code, custom python packages
• … etc.

3

What are we doing?

Example Use Case
Demo

4

Custom Python Packages

• DAG code = native airflow libraries + libraries
over pip repos

• Custom Libraries may not be in public pip
repos

• Corporate libraries + Airflow DAGs ❌
• Third party Airflow Operators ❌
• No direct way to do this in Airflow

– When deployed in cloud native fashion

5

Why are they needed?

Custom Python Packages

• Add modules to one of the folders that Airflow adds to its
`PYTHONPATH` env
– Custom code under `PYTHONPATH`
– `dags`, `plugins`

• Add extra folders where you keep your code to `PYTHONPATH`
– Extend `PYTHONPATH`

• Package your code into a Python package and install it with Airflow
– Do not want to extend `PYTHONPATH`
– Package as pip parcel, pip install it
– Import and Use in DAGs

6

What Airflow Offers

Custom Python Packages

• Add modules to one of the folders that Airflow adds to its
`PYTHONPATH` env
– `dags` and `plugins` don’t reflect at runtime
– Pods are ephemeral

• Add extra folders where you keep your code to `PYTHONPATH`
– Changes to environment variables will be lost
– Pods are ephemeral

• Package your code into a Python package and install it with Airflow
– Baking in Airflow Dockerfile
– Re-compiling for every change
– Rolling out updates & repeating this

7

Challenges for Airflow on K8s

Custom Global Python Environment

• Microservice that automates solution to earlier challenges
• Builds a “global” Python environment

– Post Deployment of Airflow
• Works in three steps

1. Environment Definition
2. Building the environment
3. Activating the environment

8

What is it?

Custom Global Python Environment

9

Design

Demo 🤞
10

Challenges

1. Stable system at all times
a. Core components restarted
b. Used maintenance model

i. State machine approach
ii. Prevents system crashes
iii. Proper rollbacks

2. In Place Upgrades
a. Python / Airflow version changes involved
b. Can break custom library
c. Might require updating / rewriting custom library

11

No Path is Easy!

Remaining Work / Future Plans

1. Backup and Restore
2. Switching away from fileshare

a. Cloud Native Approach
b. Pre built docker runtimes
c. Eliminates latency issues of fileshare

3. Extend custom environments
a. Not just Python
b. Extra dependencies like jars, binaries

12

Nothing is Perfect :)

13

Questions?

 @amogh-desai-385141157

 @amoghrajesh

 @shubhamrajofficial

 @shubhamraj-git

https://www.linkedin.com/in/amogh-desai-385141157/
https://github.com/amoghrajesh
https://www.linkedin.com/in/shubhamrajofficial/
https://github.com/shubhamraj-git

