
Optimising Airflow
Performance

Tips & strategies to enhance
metadata database performance

Pankaj Singh Software Engineer @ Astronomer & Airflow Committer

Pankaj Koti Software Engineer @ Astronomer & Airflow Committer

What Weʼll Cover

1. DAG Authoring Best Practices
2. Database Optimization

a. Unused Indexes
b. Missing Indexes
c. Table and Index Bloat

2023 Airflow Survey Result

DAG Authoring

Expensive Call
Avoid making network calls or
performing heavy computations at
the top level of the code.

Heavy Library Import
Avoid top-level imports for large
libraries

Jinja Template
Use Jinja templates to access
Airflow resources, as they are
resolved at runtime

Detect Top-level Code
A simple test can be conducted by
running python <dag_file>.py.

DAG Authoring
Example: Top-level expensive call

DAG Authoring
Example: Top-level import

DAG Authoring
Example: Jinja template

DAG Authoring
Example: Detect top-level code

> python <my_dag.py> > time python <my_dag.py>

Optimising Database
Performance

Metadata Performance Degradation

High Disk
Consumption
Ex - The TI table
uses about 4.7GB,
but its indexes add
another 20GB

Slow Query
Larger index sizes
can significantly slow
down queries by
increasing disk I/O,
lock contention, and
resource usage

Scheduler Liveness
Failure
Scheduler fails to
respond, often due to
metadatabase poor
performance

Unused Indexes

Identifying Unused Indexes
Identifying unused indexes can be challenging due to
various factors

Index Scan Metrics
Over Time
How frequently the
indexes are used in
query execution over
a period can change

Dynamic Usage
Patterns
The indexes used
vary depending on
the specific use
cases and feature
requirements

Version-Related
Usage
Indexes may be
added or removed
depending on the
version of Airflow

Unused Indexes

Unused Indexes: Time Is Also a Factor

Index 12/04/2024 15/04/2024 17/04/2024

idx_last_scheduling_decision (size MB) 5047 5125 5183

idx_last_scheduling_decision (scan #) 0 0 0

idx_log_dag (size MB) 2291 2353 2399

idx_log_dag (scan #) 6 6 6

Deleting Unused Indexes

Deleted index
● Table: dag_run
● Index:

idx_last_scheduling_decision

Potential candidate
● Table: log
● Index: idx_log_dag

Airflow 2.9.2
https://github.com/apache/airflow/pull/39275

https://github.com/apache/airflow/pull/39275

Impact of Index Deletion

More disk space
Deleting the
idx_last_scheduling_
decision indexes
freed up 5GB of disk
space

Fast query
Improving the
performance of write
queries (such as
insert and update)

Scheduler liveness
failure
Gain acceptable
performance to
prevent frequent
scheduler failures

Future: Exporting Stats for Index Usage

Reliable Index Stats
● To identify unused

indexes in PostgreSQL,
query the
pg_stat_user_indexes
view

● To export
pg_stat_user_indexes via
Prometheus, use the
PostgreSQL exporter tool

Missing Indexes

Slow Queries

Slow DAG List Page
Time take to loading dag list page
was proportional to size of
metadata.

Slow Stale Metadata Deletion
Stale metadata deletion of 1 week's
data took 7 mins and Astronomer
Support needed to delete data of 1
year for a customer which could
take around 6hrs.

Slow Query Side Effect

Turnaround Time to Fetch Results
Time time taken to get the results
increases.

High CPU Utilization
Sequential scanning of the
metadata database raises CPU
utilization

Identify Slow Query

Identify Slow Query - Result

Adding Missing Indexes

Table Index

dag_tag idx_dag_tag_dag_id

dag_warning idx_dag_warning_dag_id

dag_schedule_dataset_reference idx_dag_schedule_dataset_reference_dag_id

dag_schedule_dataset_reference idx_dataset_dag_run_queue_target_dag_id

dag_schedule_dataset_reference idx_task_outlet_dataset_reference_dag_id

Airflow 2.10
https://github.com/apache/airflow/pull/39638

https://github.com/apache/airflow/pull/39638

Impact of Index Addition
Not all metadata index is require by everyone

Slow Stale metadata deletion
Improved by the addition of an
index which reduced the time of
deletion of 1 year data to 36sec
from 6 hours.

Future Works of a slow load of
DAG list page
Split the page into multiple
components that can execute
parallel queries instead of the
serial execution.

Table & Index
Bloats

Causes, Detection, &
Mitigation Strategies

Introduction
What is a Database bloat?

Table Bloat
Excessive unused space in tables
due to deleted or outdated data
that hasnʼt been reclaimed

Common in systems with frequent
updates & deletes

Index Bloat
Due to deleted or outdated index
entries

Can significantly degrade
performance as indexes grow
larger than necessary

Causes of Table Bloats

Frequent
Updates/Deletes
Lack of autovacuum
or incorrect
autovacuum settings

Lack of Proper
Maintenance
Failure to regularly
vacuum and analyze
the database

Inefficient Storage

Over-allocated space
during table creation
or after significant
changes in data
volume

Credits:
https://hakibenita.com/postgresql-unused-index-size#index-and-table-bloat

Causes of Index Bloats

Frequent
Updates/Deletes on
Indexed Columns
Indexes donʼt shrink
automatically after
deletions

Poor Index
Management
Over-indexing and
lack of regular index
maintenance

Credits:
https://hakibenita.com/postgresql-unused-index-size#index-and-table-bloat

Impact of Table & Index Bloats

Performance
Degradation
Slower query
execution times

Increased I/O
operations &
memory usage

Increased Storage
Costs
Larger than
necessary database
files

Maintenance
Overhead

Longer backup &
restore files

Detecting Bloats

Tools for Detection
PostgreSQL: pg_stat_all_tables,
pgstattuple, pg_repack

MySQL OPTIMIZE TABLE,
ANALYZE TABLE

Key indicators
● Difference between

table/index size and the actual
data size

● Increasing table/index size
without proportional data
growth

Mitigating Table Bloats

Re-Create the Table
Often requires a lot
of development,
especially if the table
is actively used as
itʼs being rebuilt

Vacuum the Table
Query:
VACUUM FULL table_name

Will lock the page
briefly

Using pg_repack

create EXTENSION pg_repack;

$ pg_repack -k --table
table_name db_name

Mitigating Index Bloats

● Look for queries to detect index bloats based on your database
E.g. For PostgreSQL, below is a helpful query
https://github.com/ioguix/pgsql-bloat-estimation/blob/master/btree

/btree_bloat.sql

● Reindex indexes with bloats

REINDEX INDEX index_name

https://github.com/ioguix/pgsql-bloat-estimation/blob/master/btree/btree_bloat.sql
https://github.com/ioguix/pgsql-bloat-estimation/blob/master/btree/btree_bloat.sql

Caveat: Do It at Your Own Risk

● Airflow metadata database expects the DDLs to
be unaltered and only be modified via the
migrations

● But if you’re cautious and can take care of any
potential conflicts then you’re good to apply your
findings and solutions

Thank you!
Questions?

#airflow-performance

