Automated Testing and Deployment of
DAGs

Austin Bennett

Automation and Testing

Foundations
For Python/AirFlow

Best Practices: Foundations

There are some “Best Practices”:

https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html

But, let’s talk about the FOUNDATIONS/BASICS

P.S. | take for Git use as a given; though, | think much of the talk will be applicable even if not(?)

Code Hygiene

e Might not seem fun, or even a distraction ...
e BUT...

name: Mark and close stale pull requests

on:
schedule:
- cron: '00 01 % *x x'

StaleBot

env.:
PR_STALE_DAYS: 14
PR_CLOSE_DAYS: 14

https://qithub.com/actions/stale

O oo NOU A WN R

o
(A

jobs:
stale:
runs—on: ubuntu-latest

[N
5 WN

permissions:
#contents: write —— ADD this if/once allowing branches to be deleted [also need to add
issues: read
pull-requests: write
steps:
- uses: actions/stale@v8
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-pr-message: "This pull request has been marked as stale. It will be closed in ${
close-pr-message: "This pull request has been closed due to lack of activity."
days-before-pr-stale: ${{ env.PR_STALE_DAYS }}
days-before-pr-close: ${{ env.PR_CLOSE_DAYS }}

N NNNNNNNRRR 22
NOoOouUbhWNRSWOOLONOW

Consistency, Commonalities

Where to begin?

e \We are talking airflow, so esp. Python code in:

® J$AIRFLOW_HOME/plugins
® SAIRFLOW_HOME/dags

Some Tools

e CONSISTENT ENVIRONMENTS

o Poetry

o Nix

o Devcontainers
e pre-commit

e GH Actions
e PYTHON

o Black

o Ruff/ Flake8

o Type-checking(?!)
e SQL

o SQLFIuff

CONSISTENCY Across Team

Define and Pin Versions/Dependencies to save debug headaches!!

At least a requirements.txt
Poetry is great if sticking to ONLY Python
BUT, for environments not tied to python, see:

e NIX
e DevContainers

https://python-poetry.org/

Wider than Python Ecosystem: NIX

https://nixos.orqg/

Pros/Cons.
Cool Design.
Works.

Not Common.
Plays well with poetry:
https://github.com/nix-community/poetry2nix

Tutorial; https://determinate.systems/posts/zero-to-nix/

DevContainers

https://containers.dev/

Can run locally while developing, and beyond

Well supported by some major IDEs

Can be ‘just’ Dockerfiles

Pre-Commit

Run things locally “before” the commit

Official supported hooks: Pre-Commit

e https://pre-commit.com/hooks.html https://pre-commit.com/

Also, can just be a ‘hook’/trigger based on the action of attempting to commit

Airflow Repo uses Pre-Commit:

e https://qithub.com/apache/airflow/blob/main/.pre-commit-config.yaml

A s currently 1346 lines on master

Pre-Commit; Starter

“epo: https://github.com/pre-commit/pre—-commit-hooks
ev: v4.4.0

100k <
IOOKS .

— id: check-yaml

: end-of-file-fixer

l: trailing-whitespace
check-toml
check-json

A good starting place for Python

e Black is the uncompromising Python code formatter. By using it, you agree to
cede control over minutiae of hand-formatting. In return, Black gives you
speed, determinism, and freedom from pycodestyle nagging about formatting.
You will save time and mental energy for more important matters.

Pre-Commit: Black [“custom”]

~epo: local

id: black
1ame: black
language: system
: poetry run black --check
(python]

GitHub Action: Black [off-the-shelf]

name: Lint

[push, pull_request]

jobs:
Lint:
runs—on: ubuntu-latest
Steps:
— uses: actions/checkout@v4
— uses: psf/black@stable

GitHub Action: Black [“custom” |

me: Black
on: [pull_request]
This can even be improved o: Lbunticlatest

. : “image: ${{ vars.CONTAINER }}
Ex: find changed files st S iaitoratiinlk/andea

e jitterbit/get-changed-files S N e e

Or custom code ... "~ uses: actions/checkout@v4
included to aid debuggin

Then only check the ‘new’/updated name: Echo value for container build
run: echo "${{ vars.CONTAINER }}"

Again, pros/cons ane: Run Black
SheltlUs—basSh

iuh: poetry run black --check .

AIRFLOW RULES

Ex: https://github.com/BasPH/pylint-airflow [needs updated]
Also: https://github.com/feluelle/airflint [says not production ready]

The current codes are:

Code

C8300

C8301

C8302

8303

C8304

C8305

C8306

R8300

w8300

E8300

E8301
E8302

E8303

E8304

Symbol Description
diff t-operat For i assign the same variable name and task_id to operators.
varname-taskid
tch-callabl For i name the callable function '_[task_id]', e.g.
taskid PythonOperator(task_id='mytask', python_callable=_mytask).

mixed-dependency-
directions

task-no-
dependencies
task-context-
argname
task-context-
separate-arg

tch-dagid

For consistency don't mix directions in a single statement, instead split
over multiple statements.

Sometimes a task without any dependency is desired, however often it is
the result of a forgotten dependency.

Indicate you expect Airflow task context variables in the **kwargs
argument by renaming to **context.

To avoid unpacking kwargs from the Airflow task context in a function, you
can set the needed variables as arguments in the function.

g
filename

unused-xcom

basehook-top-level

duplicate-dag-name
duplicate-task-name

duplicate-
dependency

dag-with-cycles

task-no-dag

For i match the DAG filename with the dag_id.

Return values from a python_callable function or execute() method are
automatically pushed as XCom.

Airflow executes DAG scripts periodically and anything at the top level of a
script is executed. Therefore, move BaseHook calls into
functions/hooks/operators.

DAG name should be unique.
Task name within a DAG should be unique.

Task dependencies can be defined only once.

A DAG is acyclic and cannot contain cycles.

A task must know a DAG instance to run.

AIRFLOW RULES: Ruff!

See: https://qgithub.com/astral-sh/ruff/issues/4421

Currently ‘just’ one rule:

e ‘“task variable name should be same as task_id”
o https://github.com/astral-sh/ruff/pull/4687

Room for more. Community is open for contributions!

RUFF

Extremely FAST

Ruff re-implements some of the most popular Flake8 plugins and related code quality tools, including:

Compare to Flake-8

AND MOAR

LT

(E) Charlie Marsh &

Apache Airflow adopts the Ruff formatter! /# # #

RUFF

Has been in use for awhile

Switch from Black to Ruff formatter #35287

@ Comversation 25
6 [-
T PR switches th formatter we usefrom Black to Ruff, now tha Ruff's introduced a

- "
«» Julian LaNeve

Just migrated Apache Airflow's ~1m lines of code from Black to Ruff's new
formatter... it's about 40x faster and took less than an hour. Incredible work
that @charliermarsh & the team at @astral_sh are doing!

https://x.com/charliermarsh/status/1719496146815422536

Ruff: Pre-Commit

- repo: https://github.com/astral-sh/ruff-pre—-commit
Ruff version.
rev: v0.6.4

hooks:
Run the linter.
- id: ruff

args: [——fix]
Run the formatter.
— id: ruff-format

https://qithub.com/astral-sh/ruff-pre-commit

Ruff GitHub Action

name: Ruff
on: [push, pull_request]
jobs:
o LR
runs—-on: ubuntu-latest
Steps:

— uses: actions/checkout@v4
— uses: chartboost/ruff-action@vl

SQLFIuff

DAGs orchestrate ALOT of SQL

Lint &

SQLFluff finds issues with your SQL
code and reports them back to you
(and your team) automatically so that
your code reviews can be more about
function and less about form.

Parse

SQLFluff parses your SQL to catch a
range of syntax issues without
needing access to the database, so
you can catch mistakes earlier in your
development process.

Fix X
SQLFluff saves time by fixing linting
issues found in your code to save you

time, and make it easy to have
consistent and legible SQL.

Configure i@

SQLFIluff is configurable to work with
a range of SQL dialects and style
choices. It has opinionated defaults,
so you can get going easily, but a
range of flexible configuration options
to fit your local style.

SHL LU

9

L

The SQL Linter for humans.

SQLFIuff

DIALECTS:
ANSI
Athena
BigQuery
ClickHouse
Databricks
Db2
DuckDB
Exasol
Greenplum
Hive
Materialize
MariaDB
MySQL
Oracle
PostgreSQL
Redshift
Snowflake
SOQL
SparkSQL
SQLite
T-SQL
Teradata
Trino
Vertica

SHLYLLAT

"~ The SQL Linter for humans.

See Contribution guide if need more than this —

https://github.com/salfluff/sglfluff/wiki/Contributing-Dialect-Changes

Templating [env/project] variables

https://docs.sqlfluff.com/en/2.1.3/developingplugins.html

Manual Deployment

[st

Manual LOG IN
To deploy !?!

$AIRFLOW_HOME/dags

Auto-Deploy

With Safeguards, once the code is OK, deploy it...

BUT ... “PROTECT THE REPO”

name: Deploy Airflow DAGs

DEPLOY

push:
branches:
- master

permissions:
id-token: write
contents: read

runs-on: ubuntu-latest

steps:
— uses: actions/checkout@v3
- id: 'auth'

uses: 'google-github-actions/auth@v2’
with:

workload_identity_provider: ${{ vars.PROD_WIP }}
service_account: ${{ vars.PROD_SA }}
- name: 'Set up Cloud SDK'

uses: 'google—github-actions/setup—gcloud@v2'
name: 'sync DAG files'

run: ‘'gsutil -m rsync -d -r $REPO_PATH/dags $AF_ENV/dags'

Airflow Rules!

9 Testing

Bas Harenslak
Julian de Ruiter

This chapter covers

e Testing Airflow tasks in a CI/CD pipeline

Structuring a project for testing with pytest

Mimicking a DAG run to test tasks that apply templating | | FTITHT

Faking external system events with mocking

Testing behavior in external systems with containers

MOR

e ActionLint :-p
o Lint yor GH Actions

e Types ... MyPy, PyRight, PyType

1
PyTest and more
Commit/extend RUFF!
Don'’t forget to read/implement the "Data Pipelines with Airflow™ book
With all of these you'll be in solid shape

