
Automated Testing and Deployment of
DAGs

Austin Bennett

Automation and Testing
Foundations

For Python/AirFlow

Best Practices: Foundations

There are some “Best Practices”:

https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html

But, let’s talk about the FOUNDATIONS/BASICS

P.S. I take for Git use as a given; though, I think much of the talk will be applicable even if not(?)

Code Hygiene

● Might not seem fun, or even a distraction …
● BUT …

StaleBot

https://github.com/actions/stale

Consistency, Commonalities

Where to begin?

● We are talking airflow, so esp. Python code in:

● $AIRFLOW_HOME/plugins

● $AIRFLOW_HOME/dags

Some Tools

● CONSISTENT ENVIRONMENTS
○ Poetry
○ Nix
○ Devcontainers

● pre-commit
● GH Actions
● PYTHON

○ Black
○ Ruff / Flake8
○ Type-checking(?!)

● SQL
○ SQLFluff

●

CONSISTENCY Across Team

Define and Pin Versions/Dependencies to save debug headaches!!

https://python-poetry.org/

At least a requirements.txt

Poetry is great if sticking to ONLY Python

BUT, for environments not tied to python, see:
● NIX
● DevContainers

Wider than Python Ecosystem: NIX

https://nixos.org/

Pros/Cons.

Cool Design.

Works.

Not Common.

Plays well with poetry:

https://github.com/nix-community/poetry2nix

Tutorial: https://determinate.systems/posts/zero-to-nix/

DevContainers

https://containers.dev/

Can run locally while developing, and beyond

Well supported by some major IDEs

Can be ‘just’ Dockerfiles

Pre-Commit

Run things locally “before” the commit

Official supported hooks:

● https://pre-commit.com/hooks.html

Also, can just be a ‘hook’/trigger based on the action of attempting to commit

Airflow Repo uses Pre-Commit:

● https://github.com/apache/airflow/blob/main/.pre-commit-config.yaml

^^ is currently 1346 lines on master

https://pre-commit.com/

Pre-Commit: Starter

A good starting place for Python

● Black is the uncompromising Python code formatter. By using it, you agree to
cede control over minutiae of hand-formatting. In return, Black gives you
speed, determinism, and freedom from pycodestyle nagging about formatting.
You will save time and mental energy for more important matters.

Pre-Commit: Black [“custom”]

GitHub Action: Black [off-the-shelf]

GitHub Action: Black [“custom”]

This can even be improved

Ex: find changed files

● jitterbit/get-changed-files

Or custom code …

Then only check the ‘new’/updated

Again, pros/cons

AIRFLOW RULES

● Ex: https://github.com/BasPH/pylint-airflow [needs updated]
● Also: https://github.com/feluelle/airflint [says not production ready]

AIRFLOW RULES: Ruff!

See: https://github.com/astral-sh/ruff/issues/4421

Currently ‘just’ one rule:

● “task variable name should be same as task_id”
○ https://github.com/astral-sh/ruff/pull/4687

Room for more. Community is open for contributions!

RUFF

Extremely FAST

Ruff re-implements some of the most popular Flake8 plugins and related code quality tools, including:

● autoflake
● eradicate
● flake8-2020
● flake8-annotations
● flake8-async
● flake8-bandit (#1646)
● flake8-blind-except
● flake8-boolean-trap
● flake8-bugbear
● flake8-builtins
● flake8-commas
● flake8-comprehensions
● flake8-copyright
● flake8-datetimez
● flake8-debugger
● flake8-django
● flake8-docstrings
● flake8-eradicate
● flake8-errmsg
● flake8-executable
● flake8-future-annotations
● flake8-gettext
● flake8-implicit-str-concat
● flake8-import-conventions
● flake8-logging
● flake8-logging-format
● flake8-no-pep420
● flake8-pie
● flake8-print
● flake8-pyi
● flake8-pytest-style
● flake8-quotes
● flake8-raise
● flake8-return
● flake8-self
● flake8-simplify
● flake8-slots
● flake8-super
● flake8-tidy-imports
● flake8-todos
● flake8-type-checking
● flake8-use-pathlib
● flynt (#2102)
● isort
● mccabe
● pandas-vet
● pep8-naming
● pydocstyle
● pygrep-hooks
● pylint-airflow
● pyupgrade
● tryceratops
● yesqa

Compare to Flake-8

AND MOAR

RUFF

Has been in use for awhile

https://x.com/charliermarsh/status/1719496146815422536

Ruff: Pre-Commit

https://github.com/astral-sh/ruff-pre-commit

Ruff GitHub Action

SQLFluff

DAGs orchestrate ALOT of SQL

📜 The SQL Linter for humans.

SQLFluff

See Contribution guide if need more than this →

https://github.com/sqlfluff/sqlfluff/wiki/Contributing-Dialect-Changes

📜 The SQL Linter for humans.

DIALECTS:
ANSI
Athena
BigQuery
ClickHouse
Databricks
Db2
DuckDB
Exasol
Greenplum
Hive
Materialize
MariaDB
MySQL
Oracle
PostgreSQL
Redshift
Snowflake
SOQL
SparkSQL
SQLite
T-SQL
Teradata
Trino
Vertica

Templating [env/project] variables

https://docs.sqlfluff.com/en/2.1.3/developingplugins.html

Manual Deployment

Manual LOG IN
To deploy !?!

$AIRFLOW_HOME/dags

Auto-Deploy

With Safeguards, once the code is OK, deploy it…

BUT … “PROTECT THE REPO”

DEPLOY

Airflow Rules!

MOR

● ActionLint :-p
○ Lint yor GH Actions

● Types … MyPy, PyRight, PyType
○ !!

● PyTest and more
● Commit/extend RUFF!
● Don’t forget to read/implement the `Data Pipelines with Airflow` book
● With all of these you’ll be in solid shape

