
Weathering the Cloud Storms
with Multi-Region Workflows

Amit Chauhan

Agenda

- Airflow as a distributed System
- Central role of Database
- High Availability, Resilience and Horizontal Scalability
- Why we should consider using Distributed Database instead of default

choices.
- Introduce YugabyteDB for resilience and scalability
- Demo: Integrating Airflow with YugabyteDB
- High level overview of distributed database internals

Architecture of Airflow

Typical High Availability Airflow setup

● Diagram of a typical
production Airflow setup

● Single or Multi-node
Airflow deployment
(Scheduler, Web Server,
Workers)

● Metadata database
(PostgreSQL)

● Object storage (for DAGs
or logs)

● Multi-AZ or single region

Airflow as a Distributed System

Key Points

✓ Airflow's
architecture is
built to
support
distributed
execution,
allowing it to
scale
horizontally.

Multi AZ/Region Setup

Scheduler

Workers

Executors

Web Servers

Database

✓ Multiple schedulers can be configured in a high-availability setup,
ensuring tasks are scheduled even in case of failure.

✓ Workers are processes that actually execute the tasks (jobs). They
can be distributed across multiple machines or regions, allowing
tasks to run in parallel.

✓ There are several types of executors (e.g., LocalExecutor, CeleryExecutor),
with distributed executors like CeleryExecutor enabling task distribution
across multiple nodes.

✓ You can add new nodes horizontally

???

Component

Metadata is stored in DB of your choice

Central Role of the DB

● Single Source of Truth: The metadata database
stores critical information like:

○ DAG execution statuses (success, failure,
etc.)

○ Task dependencies and their states
○ Task logs and historical execution data

● Communication Hub: Every core Airflow
component (Scheduler, Workers, Web Server)
interacts with the metadata database. This
interaction is essential for:

○ Task scheduling and dependency resolution
(Scheduler)

○ Access to logs and status updates (Workers,
Web Server)

○ User-facing metrics and reports (Web Server)

 Single Point of Failure

Vulnerability: Since the metadata
database is centralized, its failure can
disrupt the entire Airflow environment.

● Scheduler Failure
● Worker Failure
● Web Server Failure

Horizontal Scalability

These default choices (postgres, mysql) are designed to
scale vertically—by adding more CPU, RAM, or storage to a
single instance.

● Not Designed for Horizontal Scaling: Scaling
PostgreSQL across multiple nodes (horizontal
scaling) is challenging and often requires complex
replication setups, which don’t fully mitigate the risk
of bottlenecks.

● Challenging Replication: Replicating a traditional
RDBMS across regions or zones is difficult and often
leads to inconsistency, high-latency reads, and write
conflicts.

High Availability and Resiliency

● Achieving high availability especially
across multi region layout is operationally
challenging.

● Can often result in downtime of few to
several minutes even during planned
maintenance.

● Replicating a traditional RDBMS across
regions or zones is difficult.

What can we do about this?

● Airflow’s reliance on a centralized
metadata database introduces
limitations in scalability, resilience, and
performance.

● As workloads grow, the database
becomes a bottleneck, and its
single-point-of-failure nature adds
significant operational risk.

● Transitioning to a distributed database
solution can mitigate these challenges,
ensuring high availability and horizontal
scalability.

Availability Zone 1

Availability Zone 2 Availability Zone 3

What are my choices for distributed SQL database?

● There are many choices - YugabyteDB, TiDB, Spanner, etc.
● If you are using OSS Airflow and want something cloud agnostic then

YugabyteDB (Postgres driver) is a great choice.

Proposed Architecture with YugabyteDB

New diagram for Airflow setup using
YugabyteDB:

● Multi-node, distributed
database

● Multi-region/multi-AZ database
nodes for high availability

● High resilience at the database
layer to match Airflow
distributed architecture

● Automatic failover, scalability,
geographic redundancy

Distributed SQL database for
transactional applications.

100% open source. Runs on any cloud.

Scale, Resilience &
Developer Friendly APIs

Horizontal
Scalability

SQL

PostgreSQL
Compatibility

Resilience and
High Availability

Geographic
Distribution

ACID
Transactions

Security

Cloud native relational database for cloud native applications

Benefits of Using a Distributed Database (YugabyteDB)

● 100% Open source (Apache 2.0)
● Plug and Play replacement for

Postgres
● No single point of failure for the

metadata database
● Horizontal scalability
● Fault tolerance across regions/AZs
● Performance improvements with

automatic sharding and
rebalancing of data

Flexible deployment options

1. Single Region, Multi-Zone

Availability Zone 1

Availability Zone 2 Availability Zone 3

Consistent Across Zones
No WAN Latency But No

Region-Level Failover/Repair

2. Single Cloud, Multi-Region

Region 1

Region 2 Region 3

Consistent Across Regions
with Auto Region-Level

Failover/Repair

3. Multi-Cloud, Multi-Region

Cloud 1

Cloud 2 Cloud 3

Consistent Across Clouds
with Auto Cloud-Level

Failover/Repair

Choose Your Required Level Of Resilience

Fault Zone:
Node or Rack

Fault Zone:
Availability Zone or
Data Centre

Fault Zone:
Continental Regions

Fault Zone:
Global Regions

Latency
Read < 1ms
Write < 2ms

Latency
Read < 1ms
Write < 3ms

Latency
Read 310ms
Write 1030ms

Latency
Read 100ms
Write 200ms

yugabyteDB also has advanced features for performance tuning geo-distribution including
Geo-placement of data by partition, Read Replicas, Follower Reads, Prefered Zones, xCluster Async Replication

17

Setting Up Airflow with YugabyteDB

All you need to do is provide YB Connectivity details in airflow.cfg. That’s it!

AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://yugabyte:yugabyte@<YB-DB-HOST>:5433/yugabyte

AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://yugabyte:yugabyte@<YB-DB-HOST>:5433/yugabyte

In database, You might need to do one more thing:
ALTER ROLE <DB_UserName> SET yb_silence_advisory_locks_not_supported_error=on;

This won’t be needed once following Github issue is fixed: https://github.com/yugabyte/yugabyte-db/issues/3642

ER Diagram

ER Diagram

Demo

Demo Setup: Airflow with YugabyteDB in Multi-AZ/Multi Region setup

● We will setup YugabyteDB cluster (multi-node, multi-AZ or
multi-region)

● Show how easy it is to Setup Airflow to use YugabyteDB cluster.
● We will bring down entire datacenter and showcase how Airflow

can still remain functional.
● Discuss the High Availability during planned and unplanned

outages.

Distributed DB Internals
How they provide resilience and Horizontal Scalability

Transactional Distributed SQL Database with a Pluggable API Layer

High-Level Architecture: Under the Hood of a 3-Node Cluster

Distributing Data

tablet 1’

● User tables sharded into tablets

● Tablet = group of rows

● Sharding is transparent to user

○ HASH, RANGE supported

● Assume 3-nodes across zones

● How to distribute data across

nodes?

Distributing Data Across Nodes, Zones, Regions

tablet 1’

In real deployments,

many tablets per node

Tablets (per-table, across tables)

evenly distributed across nodes

High Availability - Replication uses Raft Consensus algorithm

tablet 1’

Raft Leader

Raft Algorithm can achieve
per-row consistency across nodes

On failure, HA achieved because
new leader elected quickly

Tablet

Replication in a 3 node cluster

tablet 1’

● Assume rf = 3

● Survives 1 node or zone failure

● Tablets replicated across 3 nodes

● Follower (replica) tablets balanced

across nodes in cluster

Diagram with replication factor = 3

Tolerating Node Outage

● New tablet leaders re-elected

(~3 sec)

● No impact on tablet follower

outage

● Follower reads ok

Automatic Resilience

● After 15 mins, data is

re-replicated (if possible)

● On failed node recovery,

automatically catch up

● Tablet leaders

auto-rebalanced

Automatic rebalancing

● New leaders evenly

rebalanced

● On failed node recovery,

automatically catch up

How Horizontal Scalability Works

tablet 1’

● Add nodes to scale cluster

● Cluster gets balanced by distributing

existing tablets to new nodes

Scale Cluster

Conclusion

- Architecture of Airflow allows you to easily consume distributed database.
- With minimal change you can make your Airflow Cluster truly resilient and horizontally scalable even

in Multi-Zone or Multi Region setup.

Airflow + Distributed SQL DB (YugabyteDB) = Awesomeness!

Questions?
LinkedIn: www.linkedin.com/in/thechauhan

E-mail: amchauhan@yugabyte.com

Github: https://github.com/akscjo/yb-utils

