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Agenda

- Airflow as a distributed System

- Central role of Database

- High Availability, Resilience and Horizontal Scalability

- Why we should consider using Distributed Database instead of default
choices.

- Introduce YugabyteDB for resilience and scalability

- Demo: Integrating Airflow with YugabyteDB

- High level overview of distributed database internals



Architecture of Airflow
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Typical High Availability Airflow setup

Diagram of a typical
production Airflow setup
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Airflow as a Distributed System

v Airflow's
architecture is
built to

support .
. . v Workers are processes that actually execute the tasks (jobs). They
distributed m can be distributed across multiple machines or regions, allowing
. tasks to run in parallel.
execution,

v Multiple schedulers can be configured in a high-availability setup,
ensuring tasks are scheduled even in case of failure.

v There are several types of executors (e.g., LocalExecutor, CeleryExecutor),
with distributed executors like CeleryExecutor enabling task distribution
across multiple nodes.

allowing it to
scale

horlzontally. - v You can add new nodes horizontally
Web Servers

Database ? ? ? %




Metadata is stored in DB of your choice

Aicflow DB choices
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Central Role of the DB

Single Source of Truth: The metadata database
stores critical information like:
o  DAG execution statuses (success, failure,
etc.)
o Task dependencies and their states
o Task logs and historical execution data
Communication Hub: Every core Airflow
component (Scheduler, Workers, Web Server)
interacts with the metadata database. This
interaction is essential for:
o Task scheduling and dependency resolution
(Scheduler)
o  Access to logs and status updates (Workers,
Web Server)
o  User-facing metrics and reports (Web Server)

@
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Single Point of Failure

Vulnerability: Since the metadata
database is centralized, its failure can

disrupt the entire Airflow environment.

e Scheduler Failure
e Worker Failure
e Web Server Failure




Horizontal Scalability

These default choices (postgres, mysql) are designed to
scale vertically—by adding more CPU, RAM, or storage to a
single instance.

Not Designed for Horizontal Scaling: Scaling
PostgreSQL across multiple nodes (horizontal
scaling) is challenging and often requires complex
replication setups, which don't fully mitigate the risk
of bottlenecks.

Challenging Replication: Replicating a traditional
RDBMS across regions or zones is difficult and often
leads to inconsistency, high-latency reads, and write
conflicts.

No Horizontal

Scalability 16
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High Availability and Resiliency

e Achieving high availability especially High AVQIlabilitt/ 16
across multi region layout is operationally
challenging.

e (Can often result in downtime of few to 24
several minutes even during planned /7
maintenance.

e Replicating a traditional RDBMS across
regions or zones is difficult.



What can we do about this?

e Airflow’s reliance on a centralized Availability Zone 1
metadata database introduces b @
limitations in scalability, resilience, and ’/fY \
performance. _ip

e As workloads grow, the database @ = %
becomes a bottleneck, and its AvailabilityZoneZ AvailabilityZone3
single-point-of-failure nature adds
significant operational risk.

e Transitioning to a distributed database
solution can mitigate these challenges,
ensuring high availability and horizontal
scalability.



What are my choices for distributed SQL database?

e There are many choices - YugabyteDB, TiDB, Spanner, etc.
e If you are using OSS Airflow and want something cloud agnostic then
YugabyteDB (Postgres driver) is a great choice.

‘S yugabyteDB



Proposed Architecture with YugabyteDB

New diagram for Airflow setup using
YugabyteDB:

e Multi-node, distributed
database

e Multi-region/multi-AZ database
nodes for high availability

e High resilience at the database
layer to match Airflow
distributed architecture

e Automatic failover, scalability,
geographic redundancy
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Cloud native relational database

yugabyteDB

Distributed SQL database for
transactional applications.

100% open source. Runs on any cloud.
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Benefits of Using a Distributed Database (YugabyteDB)

e 100% Open source (Apache 2.0) R :: ey
e Plug and Play replacement for . " "
Postgres R k R
e No single point of failure for the

metadata database

o Horizontal scalability

o Fault tolerance across regions/AZs

e Performance improvements with —
automatic sharding and o | L e
rebalancing of data
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Flexible deployment options

1. Single Region, Multi-Zone 2. Single Cloud, Multi-Region 3. Multi-Cloud, Multi-Region

N ] PN o
. Availability Zone 1 e I @ Region 1 el e @Cloud 1

B e N O

= = =

- Availability Zone 3 @ Region 2 @ Region 3 Q) Cloud 2 @ Cloud 3

] Availability Zone 2

Consistent Across Zones Consistent Across Regions Consistent Across Clouds
No WAN Latency But No with Auto Region-Level with Auto Cloud-Level
Region-Level Failover/Repair Failover/Repair Failover/Repair



Choose Your Required Level Of Resilience

Fault Zone: Fault Zone: Fault Zone: Fault Zone:
Node or Rack Availability Zone or Continental Regions Global Regions
Data Centre

Read < Tms Read < Tms Read 3-10ms Read ~100ms
Write < 2ms Write < 3ms Write 10-30ms Write ~200ms

also has advanced features for performance tuning geo-distribution including
Geo-placement of data by partition, Read Replicas, Follower Reads, Prefered Zones, xCluster Async Replication




Setting Up Airflow with YugabyteDB

All you need to do is provide YB Connectivity details in airflow.cfg. That's it!

AIRFLOW__DATABASE _SQL ALCHEMY CONN: postgresql+psycopg2://yugabyte:yugabyte@<YB-DB-HOST>:5433/yugabyte

AIRFLOW__CELERY _RESULT BACKEND: db+postgresql://yugabyte:yugabyte@<YB-DB-HOST>:5433/yugabyte

In database, You might need to do one more thing:
ALTER ROLE <DB_UserName> SET yb_silence_advisory_locks_not_supported_error=on;

This won't be needed once following Github issue is fixed: https://github.com/yugabyte/yugabyte-db/issues/3642
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Demo



Demo Setup: Airflow with YugabyteDB in Multi-AZ/Multi Region setup

o We will setup YugabyteDB cluster (multi-node, multi-AZ or
multi-region)

e Show how easy it is to Setup Airflow to use YugabyteDB cluster.

e We will bring down entire datacenter and showcase how Airflow
can still remain functional.

e Discuss the High Availability during planned and unplanned
outages.



Distributed DB Internals

How they provide resilience and Horizontal Scalability



Transactional Distributed SQL Database with a Pluggzable APl Layer

Pluggable Query Layer

YSQL API (Postgres YCQL API (Based on Other APIs
Compatible) cQL) (future)

Distributed, Transactional Storage Layer

Automatic Load Distributed Raft
Sharding Balancing Transactions Consensus

Deploy Anywhere

aWS 3 BE Microsoft @ On-Premises

Datacenters

S Google Cloud HN Azure

vmware Tenzu kubernetes




High-Level Architecture: Under the Hood of a 3-Node Cluster
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Distributing Data

Region 1
Zone A Zone B Zone C ‘ Auto-sharding of table >
Node #1 Node #2 Node #3 User Table Table split into tablets

e Assume 3-nodes across zones e User tables sharded into tablets

e How to distribute data across e Tablet = group of rows

nodes? e Shardingis transparent to user

HASH, RANGE supported



Region 1

Distributing Data Across Nodes, Zones, Regions

Tablets (per-table, across tables)

Node #3

In real deployments,

many tablets per node

evenly distributed across nodes

Region 1




High Availability - Replication uses Raft Consensus algorithm

Tablet

—

Raft Algorithm can achieve
per-row consistency across nodes

On failure, HA achieved because
new leader elected quickly



Replication in a 3 node cluster

e Assumerf=3

e Survives 1 node or zone failure

e Tablets replicated across 3 nodes
e Follower (replica) tablets balanced

across nodes in cluster

Zone A

Region1

Zone B

Read or update

Zone C

Node #1

Noe_~ =2
: g@%‘ 30°

A

*| Tablet-Leader

.....

Node #2

————— [ Raft Replication| .
0T} Tablet-Leader [T for updates

Node #3

Diagram with replication factor = 3




Tolerating Node Outage

Region 1
s " I e New tablet leaders re-elected
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Automatic Resilience
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Automatic rebalancing
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How Horizontal Scalability Works
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Conclusion

- Architecture of Airflow allows you to easily consume distributed database.
- With minimal change you can make your Airflow Cluster truly resilient and horizontally scalable even
in Multi-Zone or Multi Region setup.

Airflow + Distributed SQL DB (YugabyteDB) = Awesomeness!



Questions?

LinkedIn: www.linkedin.com/in/thechauhan

E-mail: amchauhan@yugabyte.com

Github: https:/github.com/akscjo/yb-utils



