Weathering the Cloud Storms
with Multi-Region Workflows

Amit Chauhan

Agenda

- Airflow as a distributed System

- Central role of Database

- High Availability, Resilience and Horizontal Scalability

- Why we should consider using Distributed Database instead of default
choices.

- Introduce YugabyteDB for resilience and scalability

- Demo: Integrating Airflow with YugabyteDB

- High level overview of distributed database internals

Architecture of Airflow

Scke,olulef

Workers

Webserver

Main Components

Re_sponsible_ for sche,o(uhng
DAGs (Directed Acyclic Gvraphs)
and Plac?ng tasks in the queue.

Execute the tasks in para“e,l.

Provides the user interface
for mon?‘toring and manaf,?ng DAGs.

Executor

Queue

Manages task execution.
Options include Ce_le,n/Exe_cu‘tor
(For distributed sys‘tems)

and LocalExecutor

(For sin::,le_—v\oo(e Se‘tups).

When using Ce,le,m/Exe_cu‘tor,

o message queue hke Redis

or RabbitMQ

manages tTask queues for workers.

Stores metadata about DAG runs,
tTask instances, los,s, ete.
T ypica“y Pos‘tgre_SQL. or Mt/SQL..

Typical High Availability Airflow setup

Diagram of a typical
production Airflow setup
Single or Multi-node

Airflow deployment
(Scheduler, Web Server,
Workers)

Metadata database
(PostgreSQL)

Object storage (for DAGs
or logs)

Multi-AZ or single region

Airflow
Webserver

Virtual
Machiny

Airflow

4)
Airflow
Scheduler
Enfun a
Virtual
_ DAGS Machine)
4)
Airflow
Scheduler
atute E
DAGs Virtual
\ Machinje

A

Tables

yvYyyvYy

Y

Airflow
Worker(s)

Virtual

Machine
)

i

Virtual
Machine

Airflow as a Distributed System

v Airflow's
architecture is
built to

support .
. . v Workers are processes that actually execute the tasks (jobs). They
distributed m can be distributed across multiple machines or regions, allowing
. tasks to run in parallel.
execution,

v Multiple schedulers can be configured in a high-availability setup,
ensuring tasks are scheduled even in case of failure.

v There are several types of executors (e.g., LocalExecutor, CeleryExecutor),
with distributed executors like CeleryExecutor enabling task distribution
across multiple nodes.

allowing it to
scale

horlzontally. - v You can add new nodes horizontally
Web Servers

Database ? ? ? %

Metadata is stored in DB of your choice

Aicflow DB choices

N

MySQOL.

PostgreSQL

VSQLite

Central Role of the DB

Single Source of Truth: The metadata database
stores critical information like:
o DAG execution statuses (success, failure,
etc.)
o Task dependencies and their states
o Task logs and historical execution data
Communication Hub: Every core Airflow
component (Scheduler, Workers, Web Server)
interacts with the metadata database. This
interaction is essential for:
o Task scheduling and dependency resolution
(Scheduler)
o Access to logs and status updates (Workers,
Web Server)
o User-facing metrics and reports (Web Server)

@

Datase

Single Point of Failure

Vulnerability: Since the metadata
database is centralized, its failure can

disrupt the entire Airflow environment.

e Scheduler Failure
e Worker Failure
e Web Server Failure

Horizontal Scalability

These default choices (postgres, mysql) are designed to
scale vertically—by adding more CPU, RAM, or storage to a
single instance.

Not Designed for Horizontal Scaling: Scaling
PostgreSQL across multiple nodes (horizontal
scaling) is challenging and often requires complex
replication setups, which don't fully mitigate the risk
of bottlenecks.

Challenging Replication: Replicating a traditional
RDBMS across regions or zones is difficult and often
leads to inconsistency, high-latency reads, and write
conflicts.

No Horizontal

Scalability 16

V%

High Availability and Resiliency

e Achieving high availability especially High AVQIlabilitt/ 16
across multi region layout is operationally
challenging.

e (Can often result in downtime of few to 24
several minutes even during planned /7
maintenance.

e Replicating a traditional RDBMS across
regions or zones is difficult.

What can we do about this?

e Airflow’s reliance on a centralized Availability Zone 1
metadata database introduces b @
limitations in scalability, resilience, and ’/fY \
performance. _ip

e As workloads grow, the database @ = %
becomes a bottleneck, and its AvailabilityZoneZ AvailabilityZone3
single-point-of-failure nature adds
significant operational risk.

e Transitioning to a distributed database
solution can mitigate these challenges,
ensuring high availability and horizontal
scalability.

What are my choices for distributed SQL database?

e There are many choices - YugabyteDB, TiDB, Spanner, etc.
e If you are using OSS Airflow and want something cloud agnostic then
YugabyteDB (Postgres driver) is a great choice.

‘S yugabyteDB

Proposed Architecture with YugabyteDB

New diagram for Airflow setup using
YugabyteDB:

e Multi-node, distributed
database

e Multi-region/multi-AZ database
nodes for high availability

e High resilience at the database
layer to match Airflow
distributed architecture

e Automatic failover, scalability,
geographic redundancy

@
X

AIRFLOW WEBSERVER

NODE-1

g !
||:
Yvyy
YUGABYTEDB

YBDB

NODE-2

NODE-3

Cloud native relational database

yugabyteDB

Distributed SQL database for
transactional applications.

100% open source. Runs on any cloud.

Scale, Resilience &
Developer Friendly APls

PostgreSQL
Compatibility

/7/3

z

Horizontal
Scalability

&

ACID
Transactions

Resilience and
High Availability

7O)
T TN
Tumn>

\\V%

Geographic
Distribution

4
a
()

Security

Benefits of Using a Distributed Database (YugabyteDB)

e 100% Open source (Apache 2.0) R :: ey
e Plug and Play replacement for . " "
Postgres R k R
e No single point of failure for the

metadata database

o Horizontal scalability

o Fault tolerance across regions/AZs

e Performance improvements with —
automatic sharding and o | L e
rebalancing of data

[
Vot
YYY
YUGABYTEDB

NODE-1 NODE-2 NODE-3

Flexible deployment options

1. Single Region, Multi-Zone 2. Single Cloud, Multi-Region 3. Multi-Cloud, Multi-Region

N] PN o
. Availability Zone 1 e I @ Region 1 el e @Cloud 1

B e N O

= = =

- Availability Zone 3 @ Region 2 @ Region 3 Q) Cloud 2 @ Cloud 3

] Availability Zone 2

Consistent Across Zones Consistent Across Regions Consistent Across Clouds
No WAN Latency But No with Auto Region-Level with Auto Cloud-Level
Region-Level Failover/Repair Failover/Repair Failover/Repair

Choose Your Required Level Of Resilience

Fault Zone: Fault Zone: Fault Zone: Fault Zone:
Node or Rack Availability Zone or Continental Regions Global Regions
Data Centre

Read < Tms Read < Tms Read 3-10ms Read ~100ms
Write < 2ms Write < 3ms Write 10-30ms Write ~200ms

also has advanced features for performance tuning geo-distribution including
Geo-placement of data by partition, Read Replicas, Follower Reads, Prefered Zones, xCluster Async Replication

Setting Up Airflow with YugabyteDB

All you need to do is provide YB Connectivity details in airflow.cfg. That's it!

AIRFLOW__DATABASE _SQL ALCHEMY CONN: postgresql+psycopg2://yugabyte:yugabyte@<YB-DB-HOST>:5433/yugabyte

AIRFLOW__CELERY _RESULT BACKEND: db+postgresql://yugabyte:yugabyte@<YB-DB-HOST>:5433/yugabyte

In database, You might need to do one more thing:
ALTER ROLE <DB_UserName> SET yb_silence_advisory_locks_not_supported_error=on;

This won't be needed once following Github issue is fixed: https://github.com/yugabyte/yugabyte-db/issues/3642

ER Diagram

FH ab_permission_view

1.n

123 id

EH ab_permission_view_role

123 permission_id

123id

123 view_menu_id

123 permission_view_id
123 role_id

0.1
FH ab_user_role ;/ AZ name
123id

123 user_id
125 role_id

5

FH dag_run_note

123 dag_run_id

123 user_id o
AZ content >'\Of— .
o ted rat Az email
created_al
= 1 @ last_login

@ updated_at

0.1
M
1.n
N 5 ab_role

123 id

F= ab_user
123 id

AZ first_name
AZ last_name
0..1| Az username
AZ password

123 login_count

123 fail_login_count
@) created_on

@) changed_on

EH task_instance_note

123 created_by_fk

123 map_index

123 changed_by_fk

123 user_id
AZ content
@) created_at

EE ab_permission

123id

AZ name

EE ab_view_menu

123 id

AZ name

e coment
@ created_at
@ updated_at

[task.
123id
Az task_id
2 dag_id
A2 run_id en

£ dag_run

123id

125 map_index
123 try_number
@ start_date
@ end_date
123 duration 1n
@ reschedule_date

EH rendered_task_instance_fields

A7 run_i
123 map_index

{ Jrendered_fields
{ 3 k8s_pod_yam!

EB ta
123id
A7 task_id

FF task_instance

1 |#2dag.

A7 task_id

A7 run_id
123 map_index

A7 dag_id
@ queued_at

@ execution_date
O start_date

@ end_date

AZ state

A7 run_id

123 creating_job_id
external_trigger
AZrun_type

@ data_interval_start

@ data_interval_end

@ last_scheduling_decision
A7 dag_hash

123 log_template_id

@ updated_at

125 clear_number

£ log_template

123id

125 map_index
@ start_date
@ end_date
123 duration

123id

2 task_id
47 dag,
A7 run_id

125 map_index
123 try_number
@ start_date 1n

O start_date
1

@ end_date

125 duration

Al state

125 try_number

125 max_tries

AZ hostname

AZ unixname

123 job_id

42 pool

125 pool_slots

A2 queue

125 priority_weight

AZ operator

AZ custom_operator_name
@ queued_dttm

125 queued_by_job_id
123 pid

AZ executor

94 executor_config

@ updated_at

A7 rendered_map_index
A external_executor_id
123 trigger_id

@ trigger_timeout

AZ next_method

{ } next_kwargs

A7 task_display_name

T trigger

123id

A7 classpath
A7 kwargs

@ created_date
125 triggerer_id

A7 filename
A7 elasticsearch_id
@ created_at

ER Diagram

3max_tries
7 hostname

7 unixname
3job_id

z pool

3 pool_slots

Z queue

s priority_weight
Z operator

Z custom_operator_name
) queued_dttm

3 queued_by_job_id

3 pid

Z executor

§ executor_config

) updated_at

7 rendered_map_index

Z external_executor_id
3trigger_i
) trigger_timeout

7 next_method

} next_kwargs

7 task_display_name

FH task_map

zdag_id
2 task_id

slength
Jkeys

7 task_i
3map_index
key
#dag_id
Zrun_id

{ value

) timestamp

1 alembic_version

[T dagrun_dataset_event

123 dag_run_id
123 event_id

T

[celery_tasksetmeta

123id

5 dag_code

7 taskset_id
94 result
@ date_done

12§ fileloc_hash

[dag_priority_parsing_request

A2 fileloc
@ last_updated
AZ source_code

2id

EE dataset_event

A fileloc

123id

FH dataset_alias_dataset_event

1
123 alias_id M

123 dataset_id

{ }extra

A7 source_task_id
AZ source_dag_i
A7 source_run_id

125 source_map_index
@) timestamp

125 event_id
1.n¥1.n
1
H
n

9 dataset_alias_dataset|
123 alias,

EE dataset_alias
1

123id

123 dataset_id ?N il

AZname

1.n:

F dag_schedule_dataset_alias_reference

123 alias_id
47 dag_id

@ created_at

N cimdntan s

7 version_num

£ callback_request

123id

@ created_at

125 priority_weight

{ } callback_data

A7 callback_type

42 processor_subdir

£ sla_miss
A7 task_id

A7 dag_i
() execution_date

@ timestamp
A7 description

notification_sent

£ dataset_dag_run_queue
123 dataset_id

2 email
\ @ registration_date

£ ab_register_user
23id
A2 first_name
A2last_name
A7 username
Az password

A7 registration_hash

EH dataset
125id

2w

~7 target_dag_id
@ created_at

F task_outlet_dataset_reference

123 dataset_id
A7 dag_id
47 task_id

@ created_at
@ updated_at

123 dataset_id
47 dag_id

@ created_at
@ updated_at

F dag_owner_attributes
A7 dag_id

47 owner

Az link

1.0
 dag_tag

7 name

{ Jextra

@ created_at
@ updated_at
[]is_orphaned

£ serialized_dag

Hjob

7 dag_id

23id

A2 fileloc

125 fileloc_hash

{ }data

95 data_compressed
@ last_updated

A2 dag_hash

2 processor_subdir

Fdag

42 dag_id

A7 root_dag_id
is_paused
s_subdag

[is_active

@ last_parsed_time
@ last_pickled

1

3 dag_schedule_dataset_reference 1| @ tast_expired
[scheduler_lock

125 pickle_id
A fileloc

A7 processor_subdir

A7 owners

A7 dag_display_name

A7 description

7 default_view

A2 schedule_interval

A7 timetable_description

{ } dataset_expression

123 max_active_tasks

123 max_active_runs

123 max_consecutive_failed_dag_runs
as_task_concurrency_limits

[“] has_import_errors.

@ next_dagrun

@ next_dagrun_data_interval_start

(7 navt dannin data intanal and

A7 dag_id
A7 state

AZ job_type

@ start_date

@ end_date

@ latest_heartbeat
A7 executor_class
A7 hostname

A2 unixname

Demo

Demo Setup: Airflow with YugabyteDB in Multi-AZ/Multi Region setup

o We will setup YugabyteDB cluster (multi-node, multi-AZ or
multi-region)

e Show how easy it is to Setup Airflow to use YugabyteDB cluster.

e We will bring down entire datacenter and showcase how Airflow
can still remain functional.

e Discuss the High Availability during planned and unplanned
outages.

Distributed DB Internals

How they provide resilience and Horizontal Scalability

Transactional Distributed SQL Database with a Pluggzable APl Layer

Pluggable Query Layer

YSQL API (Postgres YCQL API (Based on Other APIs
Compatible) cQL) (future)

Distributed, Transactional Storage Layer

Automatic Load Distributed Raft
Sharding Balancing Transactions Consensus

Deploy Anywhere

aWS 3 BE Microsoft @ On-Premises

Datacenters

S Google Cloud HN Azure

vmware Tenzu kubernetes

High-Level Architecture: Under the Hood of a 3-Node Cluster

Worker node1 Worker node2
Worker node3 P B AT S :

YB-Master i) B G . |
Manage shard metadata & yb-master1 | 7 N =1 yb-master2

coordinate cluster-wide ops =

yb-tserver1 yb-tserver2

tablet1-leader 1 tablet1-follower

|
P R R ——

YB-TServer

Stores/serves data

i tablet2-foll
in/from tablets (shards) ablet2-follower

Global Transaction Manager
Tracks ACID txns across multi-row ops, incl. clock skew mgmt.

tablet2-leader

tablet3-follower

yb-tserver3
e S——
tablet1-follower

1
1
1
L 1
~ s e — !
e - - ~—— i tablet2-follower
=~
0 1
3 I tablet3-leader
1
1
1
\

DocDB Storage Engine \dj

Purpose-built for ever-growing data, extended from RocksDB ~_ _ _ s

e o o, o S i B, 0

1
1
1
1
1
1 tablet3-follower
1
1
1
l,

o - e = e e e e —

1
I
I
T
I
I
I
]
I
I
I
I
e | ————
I
I
I
I
I
I
I
I
I
.|
1

N
b A ’
- .
0
0
mm—y
.

R Ry SapEp I ——

Raft Consensus Replication
Highly resilient, used for both data replication & leader election

Distributing Data

Region 1
Zone A Zone B Zone C ‘ Auto-sharding of table >
Node #1 Node #2 Node #3 User Table Table split into tablets

e Assume 3-nodes across zones e User tables sharded into tablets

e How to distribute data across e Tablet = group of rows

nodes? e Shardingis transparent to user

HASH, RANGE supported

Region 1

Distributing Data Across Nodes, Zones, Regions

Tablets (per-table, across tables)

Node #3

In real deployments,

many tablets per node

evenly distributed across nodes

Region 1

High Availability - Replication uses Raft Consensus algorithm

Tablet

—

Raft Algorithm can achieve
per-row consistency across nodes

On failure, HA achieved because
new leader elected quickly

Replication in a 3 node cluster

e Assumerf=3

e Survives 1 node or zone failure

e Tablets replicated across 3 nodes
e Follower (replica) tablets balanced

across nodes in cluster

Zone A

Region1

Zone B

Read or update

Zone C

Node #1

Noe_~ =2
: g@%‘ 30°

A

*| Tablet-Leader

.....

Node #2

————— [Raft Replication| .
0T} Tablet-Leader [T for updates

Node #3

Diagram with replication factor = 3

Tolerating Node Outage

Region 1
s " I e New tablet leaders re-elected

(~3 sec)

Node #1 '\'\Q_’-""\@F o>

e Noimpacton tablet follower

Node #7

outage

e Followerreads ok

Node #2 Node #5

e
— oo

Node #3 Node #6

Leader fails over to a
| follower in seconds

\
!n H#0

No Impact of node failure on
follower tablets

Automatic Resilience

Zone A

Region 1

Zone B

Zone C

Node #2

Node #5

..............................

=
R

Node #3

......

e———
Tablet-Leader

............................

After 15 mins, datais
re-replicated (if possible)
On failed node recovery,
automatically catch up
Tablet leaders

auto-rebalanced

Automatic rebalancing

Region 1

R e New leaders evenly
iwb’.:.‘.’f;'..am

rebalanced

e Onfailed node recovery,

automatically catch up

Per node: 1
tablet-leader

How Horizontal Scalability Works

= ==
— —3
== ==
—] ==
== ==

Add nodes to scale cluster

Node #3

Scale Cluster

Cluster gets balanced by distributing

existing tablets to new nodes

Zone A

—

Node #1

Region 1

Zone B

e
—

Node #2

Zone C

===
—

Node #4

—
—

Node #3

S—
| —

Node #5

—
=

Node #7

S—
——

Node #6

—
-

Node #8

—
—

Node #9

Conclusion

- Architecture of Airflow allows you to easily consume distributed database.
- With minimal change you can make your Airflow Cluster truly resilient and horizontally scalable even
in Multi-Zone or Multi Region setup.

Airflow + Distributed SQL DB (YugabyteDB) = Awesomeness!

Questions?

LinkedIn: www.linkedin.com/in/thechauhan

E-mail: amchauhan@yugabyte.com

Github: https:/github.com/akscjo/yb-utils

