
Investigating the 
many loops of the 
Airflow Scheduler
Philippe Gagnon



Philippe Gagnon
Your speaker today

Solutions Architecture at
Astronomer, inc.

Based in Montreal, Canada

Works on data platform architecture 
and implementation in heavily 
regulated industries since 2017, 
mostly around open-source



What is covered

1. Airflow task scheduling/execution components and their role
2. The scheduler initialization process
3. Task scheduling framework at a high level
4. The scheduler timers and what they do
5. How DagRuns are created
6. The scheduler ”critical section” and TaskInstance handling
7. How do executors pick up TaskInstances? CeleryExec and KubeExec
8. How does the task actually ”run”? CeleryExec and KubeExec



Schedulers... DAG Processors..? Executors… Workers ?! 

Scheduler: Responsible for adding jobs to the queue when their 
dependencies are met and triggering the execution of tasks.

DAG Processor: Parses, processes and serializes the DAG files. It can either 
run as part of the scheduler, or standalone.

Executor: Component that actually runs or submits a task for execution. It 
runs as part of the scheduler.

Worker: Component that actually executes the tasks’ payload. It runs an 
Operator’s execute method.

Triggerer: Runs and checks Triggers, which are asynchronous coroutines that 
monitor conditions after a task is deferred in order to resume it.



Tl;dr: DAGs, DagRuns, Tasks, TaskInstances

• A DAG is a DAG.
• A task is the implementation of an operator. It belongs to a DAG.
• A DagRun is the instantiation of a DAG, at runtime.
• A TaskInstance is the instantiation of a task, at runtime. It belongs to 

a DagRun.



Task scheduling and execution framework



The scheduler initialization process

• The first step needed to schedule 
tasks is to start the scheduler.

• At a high level, the CLI command 
will invoke 
_run_scheduler_job, which will 
instantiate a 
SchedulerJobRunner.

• The job runner will (1) run the 
main scheduler loop and (2) start 
the executors.



SchedulerJobRunner._run_scheduler_loop

• At this point, we’re ready to 
start the real scheduling 
loop.

• The core TaskInstance and 
DagRun scheduling logic is in 
the _do_scheduling
method, and the executor 
logic is in the heartbeat
method.

• We also run maintenance 
operations periodically.



The loop timers

Method Configuration Setting Default

adopt_or_reset_orphaned_tasks orphaned_tasks_check_interval 300

check_trigger_timeouts trigger_timeout_check_interval 15

_emit_pool_metrics pool_metrics_interval 5

_find_zombies zombie_detection_interval 10

_update_dag_run_state_for_paused_dags None! 60

_fail_tasks_stuck_in_queued task_queued_timeout_check_interval None!

_orphan_unreferenced_datasets parsing_cleanup_interval None!

_cleanup_stale_dags parsing_cleanup_interval None!



SchedulerJobRunner._do_scheduling(…)



The critical section



Impact of priority weight



The Executor Heartbeat Process



With CeleryExecutor (initialization)

• The CeleryExecutor initialization process is relatively simple.
• Everything is defined by the __init__ method.
• Two important objects are initialized:

• BulkStateFetcher
• Tasks map

• Of note, the start() method in CeleryExecutor does not do 
anything.

• It’s important to note that with CeleryExecutor, we also need to 
start workers!



With CeleryExecutor



CeleryWorker



With KubernetesExecutor (initialization)

• The KubernetesExecutor initialization process on the other hand is 
a lot more complex. This is because it tracks a lot more state than 
the CeleryExecutor.

• The main subcomponents we instantiate are (1) a task queue, (2) a 
result queue, (3) an AirflowKubernetesScheduler, (4) a Kube client, 
and (5) an event scheduler.

• Since some of these components are relatively complex to 
instantiate, we make use of the start() method for the actual 
instantiation.



With KubernetesExecutor (initialization)



With KubernetesExecutor (execute_async)



With KubernetesExecutor (sync method)



Conclusions and Takeaways

• The scheduling process follows the same steps at each iteration:
• We create DagRuns
• Queue DagRuns
• Queue TaskInstances
• Create new TaskInstances
• Run the executor

• A task always “travels” from the scheduler to the executor to the 
worker.

• Configuration parameters are numerous and need to be tuned 
carefully according to your workload patterns.



Questions?

www.linkedin.com/in/pfgagnon


	Default Section
	Slide 1: Investigating the many loops of the Airflow Scheduler
	Slide 2: Philippe Gagnon
	Slide 3: What is covered
	Slide 4: Schedulers... DAG Processors..? Executors… Workers ?! 
	Slide 5: Tl;dr: DAGs, DagRuns, Tasks, TaskInstances
	Slide 6: Task scheduling and execution framework
	Slide 7: The scheduler initialization process
	Slide 8: SchedulerJobRunner._run_scheduler_loop
	Slide 9: The loop timers
	Slide 10: SchedulerJobRunner._do_scheduling(…)
	Slide 11: The critical section
	Slide 12: Impact of priority weight
	Slide 13: The Executor Heartbeat Process
	Slide 14: With CeleryExecutor (initialization)
	Slide 15: With CeleryExecutor
	Slide 16: CeleryWorker
	Slide 17: With KubernetesExecutor (initialization)
	Slide 18: With KubernetesExecutor (initialization)
	Slide 19: With KubernetesExecutor (execute_async)
	Slide 20: With KubernetesExecutor (sync method)
	Slide 21: Conclusions and Takeaways
	Slide 22: Questions?


