
Scalable Development
of Event Driven
Airflow DAGs

Subramanian Vellaiyan
Data Engineering

Ipsa Trivedi
Data Engineering

(Previously, Envestnet)

Use Case

Data Source Onboarding

Data Source Onboarding
● Onboard data from different sources

○ Batch based and event-based sources
○ Files of different formats, types, size, layout, arrival schedules

● Standardize into a common data model
○ Source specific and source agnostic business logic
○ Metadata management
○ Integration with internal systems
○ Data mapping and transformation

● Deliver data to stakeholders within SLA
○ Filter out non-specific data
○ Process and deliver within 20 minutes of arrival
○ Data validation and reconciliation

4

Requirements and Complexity
● Variety:

○ Sources have different file formats, types, layouts, sizes, file arrival patterns
● Volume:

○ 200 sources, 100k’s of files.
○ Complete daily processing terabyte scale

● Domain Expertise:
○ Source data needs to be mapped and transformed to standard data model. Analysts have

gained knowledge over the decade.
● Daily Ops:

○ Accurate and timely monitoring to run, debug & rerun before SLA
● Processing:

○ SLA of 20 mins. Complex multi-step processing as soon as any file dependency is met.

5

Technology Stack

Data Storage – S3 Metadata –
Airtable

Data Processing – EMR on EKS

GraphQL Microservices
RDS

Athena/Snowflake

Lambda/
EKS

UI for operations and
monitoring
A

irflow

N
ew

 R
elic

Glue Catalog

Why Airflow?
● Flexible Development

○ Scalable DAG building
○ Programmatic approach, developer friendly
○ Dynamic pipeline creation

● Easy Integration
○ Easily integrate with any system
○ Ability to develop custom functionality by extending existing functionality

● Intuitive Monitoring
○ Easy to execute, debug and monitor pipelines
○ Restarting a DAG from failure point from middle of a pipeline in case of errors

● All in One Visualization
○ Convenient dependency management between tasks
○ Visualize complex orchestration in a single view. Consolidate multiple tasks in groups.

7

Scalable DAG: Framework

EMR
Processor

EC2 Step

EKS Step

EC2 Sensor

EKS Sensor

Resolve
Unique ID

Send
source

atributes

Get Unique
ID

Job
Tracking

Create
Job

Update/
Complete

Job

Create Job 1

EMR 1 EMR Job 2

EMR Job 3

Resolve
Account ID

Complete
Job

Event Driven
DAG Handling

Creating Event Driven DAGs
● One DAG per source to allow monitoring per source
● Setup:

○ A configuration driven AWS Step Function that validates the files, stages them and
triggers Airflow of the respective source in an event-based manner

○ Source specific configs driven by custom DAG creation modules to create DAGs
automatically

○ Source and file specific & agnostic configs driven by custom spark application that
contain business logic

● Airflow:
○ file_sensing task group:

■ Tasks corresponding to each file in a source
○ file_processing task group:

■ Tasks to handle file processing via API calls and spark jobs

Triggering Event Driven DAGs

Triggering Event Driven DAGs
● Run IDs of the type: <source>_<file-date>_<set_code>_<run-ts>
● Check if an execution of that source, file_date, set_code, run_date exists

or not
● If exists:

○ Mark the task for that file success via API call
● If not exists:

○ Create an execution with defined run_id of <source>_<file-date>_<set_code>_<ts>
○ Mark the task for that file success via API call

● All the “source” level information is passed to the DAG at conf level when
triggering the DAG

● All the file level information is passed to the DAG via _SUCCESS file

Scalable
Development

Simplified Architecture Diagram

Scalable DAG: Config Building

"Call API 1": {
 "processor": "call_api_1",
 "label": "Call API to get output in S3 bucket",
 "task_group": "file_processing",
 "dependencies": {
 "file_sensors": [
 "file1",
 "file2"
]
 }
 },

 "Submit Spark Job": {
 "processor": "submit_spark_job",
 "label": "Submit Spark Job for <source>",
 "task_group": "file_processing",
 "dependencies": {
 "file_processing": [
 "call_api_1"
]
 }
 }

Dependency Management Config

Scalable DAG: Config Building

" call_api_1 ": {
 "processor": “API",
 "label": "Call API to get output in S3 bucket",
 "task_group": "file_processing",
 "dependencies": {
 "file_sensors": [
 "file1",
 "file2"
]
 }
 },

 " submit_spark_job ": {
 "processor": “EMR",
 "label": "Submit Spark Job for <source>",
 "task_group": "file_processing",
 "dependencies": {
 "file_processing": [
 "call_api_1"
]
 }
 }

Dependency Management Config

Simple DAG

Complex DAG

Questions?

Email:

ipsa.trivedi@gmail.com
connect.subramanian@gmail.com

LinkedIn:
https://www.linkedin.com/in/ipsatrivedi
https://www.linkedin.com/in/svellaiyan

mailto:ipsa.trivedi@gmail.com
mailto:connect.subramanian@gmail.com
https://www.linkedin.com/in/ipsatrivedi
https://www.linkedin.com/in/svellaiyan

