
NOT A CONTRIBUTION

Event-driven, Resource Awareness
and SLO Orchestration

Problems

Required awareness
of compute resource
constraints

Coordinating
workloads takes time
and is human error
prone.

Unable to take
advantage of multiple
compute options and
flexibility

Forced to describe
DAGs in terms of start
time and cadence, but
sometimes need in
terms of deadline.

Users with multiple compute
options can now schedule
across them seamlessly

Offloaded the decision making regarding
compute resources and scheduling to the
orchestration system

Users provide
scheduling windows
and deadlines

Solution: Event-Driven, SLO-based orchestration

Event Service

Why

🤯 Multiple hops between various services

• 10s of services: Spark, Flink, Trino, Airflow etc.

• Services * Jobs * Runs * States

😇 Centralized hub for system events

• Collects, stores and distributes state to interested parties

• Decouples systemic dependencies with push mechanism

• Realtime notifications and dashboards

Why

🤯 Dependencies

• ETLs depend on upstream data availability

• Several data generation jobs, several data sources / tables

😇 Event Based Workflow Orchestration

• Efficient state based triggers

• Lower latency / just in time scheduling

• Avoid resource wastage

Architecture

Data Aware Scheduling Event Service

 Handle dependency ✅ (only datasets) ✅ (multi purpose)

 Standalone ❌ (tightly coupled to Airflow) ✅ (supports external events)

 Isolation ❌ (reside on same Airflow instance) ✅ (centralized)

 Scalability ❓(limited by Airflow cluster’s
capacity) ✅ (designed for scale)

 Traceability ✅ … work in progress

vs Data Aware Scheduling

Resource Awareness
and SLO Orchestration

“Stop and check”

Airflow’s Built-in Dep Checks

Add Custom Dep Check?

Add Custom Dep Check?

Pros

• More flexible and customizable
scheduling

Cons

• High risk: allowing adding user code
in the very centre of the hot path for
the scheduler

The Solution We Adopted Eventually

The Solution We Adopted Eventually

Features we deliver with this solution

Smarter Scheduling

e.g. shuffle the execution order of TIs

for better global scheduling performance

Resource Availability Check

If the namespace lacks enough resource,

automatically switch to another namespace

to execute the job

Integrate with the Event Service

So a certain TI will only be executed

when the event dependencies are met

Thanks!

