The Essentials of
Custom Executor
Development

Dennls Ferru22|

What is an Executor?

“Executors are the mechanism by which task instances get run.”

Local

Runs inside the Scheduler process

e Debug
e Local
e Sequential

Remote

Scheduler triggers an external worker

Celery
Dask

ECS
Kubernetes
etc

Why Create A Custom Executor?

e Are tasks executed locally or remote?

e Noisy neighbors

e Task startup time

e Preferred cloud provider

e Location-sensitive restrictions

Six Main Parts of an Executor

e Start

e Sync running tasks

e Trytorun new tasks

e Tryto adopt task instances [OPTIONAL]
e Handle failed tasks

e End (graceful exit) / Terminate (forced exit)

Real-world
Example

AWS ECS Executor

Each task that Airflow schedules for execution is run within its own ECS container.

Advantages

e Resources like CPU, memory and
disk are isolated to each individual
task

e You can build different container
images per task

e Compute resources only exist for
the lifetime of the Airflow task
itself

Disadvantages

Every task runs on a separate
container, which takes time
Config must be consistent
across deployment

Requires an existing ECS Cluster

AWS ECS Executor

What is it actually doing?

e Start

o Ensures ECS Cluster is active and responding to requests

fll ¥
¢

rt(

check health = conf.getboolean(

not check_health:

ret

.log.info(
.check_health()

AirflowException:
.log.error(

def check_health(

success_status = succee
status = success_status

try:
invalid_task_id =
.ecs.stop_task(.cluster, =invalid_task_id)

status = "failed for

except ClientError as ex:
error_code = ex.response["Error"]["Code"]
error_message = ex.response["Error"]["M

if ("InvalidParameterException” in error_code) and ("task was not found" in error_message):

pass

else:

status f"failed because: {error_message}.
except
finally:
msg_prefix = "ECS Executor healtl
if status = success_status:
.IS_BOTO_CONNECTION_HEALTHY = True
.log.info(msg_prefix, status)
else:
msg_error_suffix = (...)
raise AirflowException(msg_prefix % status + msg_error_suffix)

AWS ECS Executor

What is it actually doing?

e Start

o Ensures ECS Cluster is active and responding to requests

e Sync

o Update state on all running tasks

sync(
1f not .IS _BOTO_CONNECTION_HEALTHY:
exponential_backoff_retry(...)
1f not .IS_BOTO_CONNECTION_HEALTHY:
return

.sync_running_tasks()
.attempt_task_runs()

except (ClientError, NoCredentialsError) as error: ...

except

.log.exception(msg: "Failed

e - a \“'
.
VRN <N

def sync_running_tasks(

all_task_arns = .active_workers.get_all_arns()
1f not all_task_arns:
.log.debug("No active Airflow tasks, skipping sync.")
return

describe_tasks_response = . __describe_tasks(all_task_arns)
.log.debug(msg: "Active Workers: %s *args: describe_tasks_response)
if describe_tasks_response["failures"]:
for failure in describe_tasks _response["failures"]:
.__handle _failed _task(failure["arn"], failure["reason"])
updated_tasks = describe_tasks_response["tasks"]

for task 1n updated_tasks:
.__update_running_task(task)

AWS ECS Executor

What is it actually doing?

e Start

o Ensures ECS Cluster is active and responding to requests

e Sync

o Update state on all running tasks

e Trytorun new tasks
o Loads all submitted tasks and attempts to run them

(queue_len):
ecs_task = .pending_tasks.popleft()
if timezone.utcnow() < ecs_task.next_attempt_time:
.pending_tasks.append(ecs_task)

continue

run_task_response = ._run_task(task_key, cmd, queue, exec_config)

except NoCredentialsError: ..
except ClientError as e:

error_code = e.response["Error"]["Code"]

if error_code in INVALID_CREDENTIALS_EXCEPTIONS:

.pending_tasks.append(ecs_task)
raise

failure_reasons.append(str(e))

except E ption as e: ..

else:

if run_task_response["failures"]:
failure_reasons.extend([f["reason"] for f in run_task_response["f

if failure_reasons: ..
elif not run_task_responsel
else:
task = run_task_response["tasks"][0]
.active_workers.add_task(task, task_key, queue, cmd, exec_config, attempt_number)
try:
.running_state(task_key, task.task_arn)

except Attri TeError: [ss

AWS ECS Executor

What is it actually doing?

e Start

o Ensures ECS Cluster is active and responding to requests

e Sync

o Update state on all running tasks

e Trytorun new tasks
o Loads all submitted tasks and attempts to run them

e Tryto adopt task instances
o Check ECS Cluster for existing running tasks

xv — “ j t“\\\\".‘
Qe %7

def try adopt_task_instances(, tis: Sequence[TaskInstance]) — Sequence[TaskInstance]:

with Stats.timer("ecs _executor.adopt task _instances.duration"):

adopted_tis: list[TaskInstance] =

if task_arns := [ti.external_executor_id for ti in tis if ti.external_executor_id]:
task_descriptions = .__describe_tasks(task_arns).get("tasks", [])

for task in task_descriptions:
ti = next(ti for ti in tis if ti.external_executor_id = task.task_arn)
.active_workers.add_task(...)
adopted_tis.append(ti)

if adopted_tis:
tasks = [f"{task} in state {task.state}" for task in adopted_tis]
task_instance_str = "\n\t".join(tasks)
.log.info(...)

not_adopted_tis = [ti for ti in tis if ti not in adopted_tis]
return not_adopted_tis

AWS ECS Executor

What is it actually doing?

Start

o Ensures ECS Cluster is active and responding to requests

Sync

o Update state on all running tasks

Try to run new tasks
o Loads all submitted tasks and attempts to run them

Try to adopt task instances
o Check ECS Cluster for existing running tasks

Handle failed tasks

o Attempt any retries if applicable, otherwise log the error and remove the task from queue

;{ -
vll".ln..-ll‘ml'

__handle_failed_task(, task_arn: str, reason: str):

failure_count = .active_workers.failure_count_by_key(task_key)
if int(failure_count) < int(.__class__.MAX_RUN_TASK_ATTEMPTS):
.log.warning(...)

.pending_tasks.append(
EcsQueuedTask(...)

.log.error(...)
.fail(task_key)
.active_workers.pop_by key(task_key)

AWS ECS Executor

What is it actually doing?

e Start

o Ensures ECS Cluster is active and responding to requests

e Sync

o Update state on all running tasks

e Trytorun new tasks
o Loads all submitted tasks and attempts to run them

e Tryto adopt task instances
o Check ECS Cluster for existing running tasks

e Handle failed tasks
o Attempt any retries if applicable, otherwise log the error and remove the task from queue

e End (graceful exit) / Terminate (forced exit)

def end(, heartbeat_intervals=

try:
while True:
.sync()
1f not .active_workers:
break
time.sleep(heartbeat _interval)
except Exception:

.log.exception(1
terminate(

try:
for arn in .active_workers.get_all_arns():
.ecs.stop_task(
= .cluster, =arn,
)
.end()
except Exception:

.log.exception(

AWS ECS Executor

What is it actually doing?

Start

o Ensures ECS Cluster is active and responding to requests

Sync

o Update state on all running tasks

Try to run new tasks
o Loads all submitted tasks and attempts to run them

Try to adopt task instances
o Check ECS Cluster for existing running tasks

Handle failed tasks
o Attempt any retries if applicable, otherwise log the error and remove the task from queue

End (graceful exit) / Terminate (forced exit)

Executor Source These Slides

