Hybrid Executors
Have Your Cake
and Eat it Too

Niko Oliveira

wWho Am |?

e Apache Airflow committer

e Sr. software engineer at Amazon

o Amazon Managed Workflows for Apache Airflow (MWAA)

o Founding member of the Amazon Apache Airflow Open Source Team

e Spent much of the last year working on Airflow executors (again)

A Brief History of Hme Executors

e Executors facilitate the running of Airflow tasks (Task Instances)

e The Airflow scheduler decides when a task should run and the executor
decides where and how

e Examples:
o CeleryExecutor, KuberneteskExecutor, LocalExecutor, ECS Executor

e Runs within the Airflow scheduler process

e Pluggable and extensible, you can write your very own!

A Brief History of Hime Executors

e There are many types of Airflow executors, but some major ones include:

o Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

A Brief History of Hime Executors

e There are many types of Airflow executors, but some major ones include:

o Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

o Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where
remote workers pull tasks to execute. Often workers are persistent and run multiple tasks
at once: E.g.: CeleryExecutor, AwsBatchExecutor

A Brief History of Hime Executors

e There are many types of Airflow executors, but some major ones include:

(@)

Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where
remote workers pull tasks to execute. Often workers are persistent and run multiple tasks
at once: E.g.: CeleryExecutor, AwsBatchExecutor

Remote Containerized Executors: Airflow tasks are executed ad hoc inside
containers/pods. Each task is isolated in its own environment. E.g.:
KubernetesExecutor, AwsEcsExecutor

Executor Compromises

e Executors have their own set of pros and cons, often they are trade-offs
between latency, isolation and compute efficiency, complexity, among
other properties

Executor Compromises

e Executors have their own set of pros and cons, often they are trade-offs
between latency, isolation and compute efficiency, complexity, among
other properties

e Running multiple executors would allow you to make better use of the
strengths of all the available executors and avoid their weaknesses

Executor Compromises

e Executors have their own set of pros and cons, often they are trade-offs
between latency, isolation and compute efficiency, complexity, among
other properties

e Running multiple executors would allow you to make better use of the
strengths of all the available executors and avoid their weaknesses

e Starting with version 2.10.0, Airflow can now operate with Multiple
Executor Configuration (formerly Hybrid Executors)!

How to Use it: Configuration

[core]
executor = 'LocalExecutor,KubernetesExecutor,my.custom.module.ExecutorClass:ShortName’

o The same core.executor Airflow configuration is used for multiple executors

o The first executor in the the list is the default, it behaves in the same way a single executor
configuration did <=2.9

o Executors can be given aliases (e.g. ShortName). This allows easier specification in the DAG
code since custom modules can be quite long

o Airflow core executors are still referenced by their short names (e.g. LocalExecutor)

How to Use it: Writing DAGs

[core]

executor = 'LocalExecutor,KubernetesExecutor,my.custom.module.ExecutorClass:ShortName'

BashOperator(
task_id="hello_world_1",
Will use the custom executor class
executor="ShortName",
bash_command="echo 'hello world!'",

)

Will use the KubernetesExecutor
@task(executor="KubernetesExecutor")
def hello_world_2():

print("hello world!")

Will use the default LocalExecutor
@task()
def hello_world_3():

print("hello world!")

Use the “executor” field on tasks/operators
to specify which Executor (from
configuration) should run each task

Specify no executor at all to use the default
executor

How to Use it: Writing DAGs

executor ‘LocalExecutor, KubernetesExecutor, my.custom.module.ExecutorClass :ShortName'

def hello_world():
print("hello world!")

def hello_world_again():
print("hello world again!")

with DAG(
dag_id="hello_worlds",
Applies to all tasks in the DAG
default_args={"executor": "KubernetesExecutor"},

) as dag:
All tasks will use the executor from default args
hw = hello_world()

hw_again = hello_world_again()

You can specify an Executor to
use for every task in a DAG by
leveraging "default_args’

Individual tasks/operators may
still override the default if the
“executor field is explicitly set

Keeping an Eye on Things

e Metrics

o If only a single executor is configured in Airflow configuration, executor metrics behave
the same as they did before (for Airflow version <= 3.0)

m E.g.:executor.open_slots

o If multiple executors are configured then metrics are emitted for each executor explicitly
(Executor classname in the metric name)

m E.g.:executor.open_slots.<executor_class_name>

Keeping an Eye on Things

e Metrics
o If only a single executor is configured in Airflow configuration, executor metrics behave
the same as they did before (for Airflow version <= 3.0)
m E.g.:executor.open_slots

o If multiple executors are configured then metrics are emitted for each executor explicitly
m E.g.: executor.open_slots.<executor_class_name>

e Logging

o Logging works the same when using multiple Executors

o Executorlogs are emitted in the Airflow Scheduler log output.

Keeping an Eye on Things

e Metrics

o If only a single executor is configured in Airflow configuration, executor metrics behave
the same as they did before (for Airflow version <= 3.0)

m E.g.:executor.open_slots

o If multiple executors are configured then metrics are emitted for each executor explicitly

m E.g.: executor.open_slots.<executor_class_name>

e Logging

o Logging works the same when using multiple Executors

o Executorlogs are emitted in the Airflow Scheduler log output.

e Tasks Instances have a record of the Executor they ran with in the DB

FAQs: What if I...?

e ..configure my task to use an executor that isn't present?
o Airflow will detect this mismatch and fail to parse the DAG and show a banner in the Ul

FAQs: What if I...?

e ..configure my task to use an executor that isn't present?
o Airflow will detect this mismatch and fail to parse the DAG and show a banner in the Ul

e ..add an executor to core.executor but no tasks make use of it?
o Airflow will not be dramatically affected, this is finel

FAQs: What if I...?

e ...configure my task to use an executor that isn't present?
o Airflow will detect this mismatch and fail to parse the DAG and show a banner in the Ul

e ... add an executorto core.executor but no tasks use it?
o Airflow will not be dramatically affected, this is finel

e ...change my core.executor configuration during or between DAG runs?
o Tasks will still run with whichever executor they are specified to run with

o Tasks using the default executor will run on whatever the default is at the time of
execution

Out With The Old, In With The New

e A note on the existing “statically coded” hybrid executors:
LocalKubernetesExecutor and CeleryKubernetesExecutor

o Handcrafted/static combinations of executors, does not scale well

o Make use of the queue field to direct tasks, misuse of the field

o Creating all possible combinations is completely unreasonable

o Do not use the public base executor interface, changes often not propagated correctly

o Using these hybrid Executors is no longer recommended!

E A DAGs - Airflow x

<« &) Q D localhost:28080/home 120 53 % L H e e 8 e Nt o=
H Airflow DAGs Cluster Activity Datasets Security Browse Admin Docs R 22:32 UTC TA
DAGs
Active @) Paused @ Running @) = Failed @ F : Search DAG o000 OAutovrefresh @
DAG Owner Runs Schedule Last Run Next Run Recent Tasks Actions Links
AirflowSummit2024 airflow None > o

- || & Showing 1-1 of 1 DAGs

on: v3.0.0.dev0
sion: .dev0+31e4b9a9c8c97ae94d89a89ac94c7d402512277e.dirty

https://docs.google.com/file/d/1hiHl7AFvI2_zSXJZ_LRzG60zbOB_8vV_/preview

Questions?

O qithub.com/o-nikolas

m linkedin.com/in/niko-oliveira-aws

http://github.com/o-nikolas

