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Agenda

® The Productivity Challenge

® Opportunities with Generative Al

e Data Engineer and Analysts — A Day in life.
® Generative Al on AWS

® Demo’s

e Q&A




The Productivity Challenge

® Manual processes hinder productivity.

® Businesses seek ways to maximize output and efficiency.

® Resource constraints.

® Inadequate training.

® Unclear goals and unrealistic goals.



Where are Data Engineers & Analysts
spending time with Airflow?
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Opportunities with generative Al

ACCORDING TO GARTNER, INC.®

of enterprises will have
used generative Al APIs or
deployed generative Al—
enabled apps by 20261

MORE THAN

80%




Opportunities with generative Al

Generative Al’s ability to understand natural language enables
automation for work activities that account for

Imagine a generative Al powered assistant that saves you

B
@ 2 hours


https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier

How Al drives Productivity gains?
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Generative Al Stack

APPLICATIONS THAT USE LLMs AND OTHER FMs
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Am a zo n Q Reimagines the experience across the entire
software development lifecycle (SDLC)

Developer

Helps developers and IT professionals build and manage secure,
scalable, and highly available applications

Helps you write, debug, test, optimize, and
upgrade your code faster

Converses with you to explore new AWS capabilities, learn
unfamiliar technologies, and architect solutions

Amazon Q is built with security and privacy in mind from the start,
making it easier for organizations to use generative Al safely.



Challenge: Airflow version upgrades
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Upgrading Airflow Versions

J File Edit Selection View Go Run -+ &« - L aws-mwaa-local-runner [SSH: 54.183.109.86) DB 0o0ne&

You are connected to an OS version that is unsupported by Visual Studio Code. Learn More

[‘D‘ 2-9 a’> BE’ B Q] 4 Settings % legacy-dag.py ® || BY Extension: Amazon Q @ example_dag_with _taskflow_apip; > ([0 -«

AWS-MWAA-LOCAL-RUNNER [SSH: 54.183.109.86] dags > ® legacy-dag.py

> .github 1 from airflow import DAG, settings, secrets

v dags 2 from airflow.operators.python_operator import PythonOperator, BranchPythonOperal
from airflow.operators.dummy_operator import DummyOperator
from airflow.contrib.secrets.aws_secrets_manager import SecretsManagerBackend
from airflow.contrib.operators.emr_add_steps_operator import EmrAddStepsOperatoi
from airflow.contrib.operators.emr_create_job_flow_operator import EmrCreatelobl
docker from airflow.contrib.operators.emr_terminate_job_flow_operator import EmrTermin:
plugins from airflow.contrib.sensors.emr_step_sensor import EmrStepSensor

% example_dag_with_taskflow_api.py

|@ legacy-dag.py
db-data

requirements
startup_script from airflow.contrib.hooks.aws_hook import AwsHook

from airflow.models import Variable
from airflow.utils.trigger_rule import TriggerRule
from airflow.utils.dates import days_ago

.gitignore
CODE_OF_CONDUCT.md
. CONTRIBUTING.md import os
LICENSE import sys
mwaa-local-env import boto3
output.txt import time

README.md

VERSION default_args = {

‘owner': 'airflow',
'depends_on_past': False,
‘email’: ['airflow@example.com'],
‘email_on_failure': False
‘email_on_retry':

DAG_ID = os.path.basename(__file__).replace(’'.py’,

dag = DAG(
I | | | dac id=paG Tn ==
> SSH:54.183.10986 ®0A0 W0 D AmazonQ Ln483,Col 1 Spaces:2 UTF-8 LF Python 0
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AWS Services Introductions

® Amazon MWAA ( Managed Workflow for Apache Airflow)
O A Managed service for Apache Airflow, making it easy for data engineers and data scientists to invoke
data processing workflows on AWS.
O Easyto set up and Maintain with High availability.

e AWS Glue

O AWSGlue is a serverless data integration service that makes data preparation simpler, faster, and
cheaper.
o Cost effective, serverless, and scalable



Demo — Workflow Creation
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Creating laaC to deploy Apache Airflowt=d/




Creating DAGs and boiler plate code




o000

@ EXPLORER: MWAA

airflow imf DAG
airflow.decorators task
airflow.models rt Variable

pendu

BUCKET = Variable.get(’
KEY = Variable.get("
= Variable.get("(

COUNTRY =

h DAG(
dag_id="top_level_code
schedule_interval=None

slum.datetime(2023, 1, 1, tz="UT(

@task()
process_covid_data():

s3 = boto3.client('s3
response = s3.get_object{(Bucket=53_BUCKET, Key=

status = response.get(“ResponseMetadat ).get("HT

200:

. read_csv( response.get ("Body
df.drop(['Last_Update t!, L ! , 'Incident_Rat
df . rename (column: vince,_S : 'State y_Region': y'}, inplace=True
df = df.fillna('NA
df2 = df [df['C
df3 = df2.groupby('S hs'1].sun(). reset_index()

df3[*10KorNore'] .where((df3["Deaths"] > 10000), 1, 0
df3.sort_values(by='State")

inplace = True)

ringI0() as csv_buffer:
df3.to_csv(csv_buffer, index=False)

response = s3.put_object(
/ AWS: profile:default D Amazon Q

@  Ln34,Col66 Spaces:4 UTF-8 CRLF {4 Python 3.12.0 64-bit



Embracing Al for a Productive Future for Airflow
e Key Benefits of Al for Productivity.
® Measure Impact.
e Security.
® Review and test generated code.

® Customized Code recommendations based on Org guidelines.



Questions?
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