Unleash the Power of Al: Streamlining Airflow DAG Development
with Al-Driven Automation

Sriharsh Adari, Solutions Architect , AWS
Jeetendra Vaidya, Solutions Architect , AWS

Joe Morotti, Solutions Architect, AWS

Agenda

® The Productivity Challenge

® Opportunities with Generative Al

e Data Engineer and Analysts — A Day in life.
® Generative Al on AWS

® Demo’s

e Q&A

The Productivity Challenge

® Manual processes hinder productivity.

® Businesses seek ways to maximize output and efficiency.

® Resource constraints.

® Inadequate training.

® Unclear goals and unrealistic goals.

Where are Data Engineers & Analysts
spending time with Airflow?

——————— ~ . - . .

(* Find accurate and specific technical guidance from
relevant documentation, code examples,
resources, and so on

|

I
N | : » Design changes based on business
I& '

I

|

-1 “~_ and technical requirements
o= - \—| Design |-~ _ __ _ _ _ _ -
| (\
| ! I !
+ Update old DAG
cc?de and | @ﬂ I : I . Generate code
dependencies I : | 1 : * Manage infrastructure
' | I |
\| Maintainand } \—| Create -~
modernize
/
IN)/
\\ L//
_______ ~
|
» Identify and mitigate code (o — I
issues 1 | * Apply proper test cases for code
« Implement DAG Code g: o= changes
best practices for I o—Lo— | » Scan for security vulnerabilities in
performance and I] I code
efficiency | |
| \ Test and |

Operate -~ secure

Opportunities with generative Al

ACCORDING TO GARTNER, INC.®

of enterprises will have
used generative Al APIs or
deployed generative Al—
enabled apps by 20261

MORE THAN

80%

Opportunities with generative Al

Generative Al’s ability to understand natural language enables
automation for work activities that account for

Imagine a generative Al powered assistant that saves you

B
@ 2 hours

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier

How Al drives Productivity gains?

4)
Create
infrastructure
as code
\ J

-

Develop
DAGs

~

-

Test DAGs

Create
Documentation

J

-

.

Upgrade
Airflow Versions

~

J

Generative Al Stack

APPLICATIONS THAT USE LLMs AND OTHER FMs

! .
@ Amazon Qin

— .
@ Amazon Qin
Connect

QuickSight

[@: Amazon Q :@: Amazon Q

Business Developer

TOOLS TO BUILD WITH LLMs AND OTHER FMs

...

I_ E%.f’ Amazon Bedrock _I

Guardrails | Agents | Customization capabilities

INFRASTRUCTURE FOR FM TRAINING AND INFERENCE

{@I GPUs {ﬂ—%} AWS iﬂ_%) AWS @ Amazon

Trainium Inferentia SageMaker

L@ Amazon EC2 Capa AWS

Blocks Nitro) Neuron

Elastic Fabric

L@ Amazon EC2
Adapter (EFA)

UltraClusters

Am a zo n Q Reimagines the experience across the entire
software development lifecycle (SDLC)

Developer

Helps developers and IT professionals build and manage secure,
scalable, and highly available applications

Helps you write, debug, test, optimize, and
upgrade your code faster

Converses with you to explore new AWS capabilities, learn
unfamiliar technologies, and architect solutions

Amazon Q is built with security and privacy in mind from the start,
making it easier for organizations to use generative Al safely.

Challenge: Airflow version upgrades

Build Apply Build @
PAG and test knowledge and test Gen Al Upgraded
code (MWAA local (MWAA local : code
runner 2.x) base runner 2.y) fixes
errors)
g\
Knowledge

database

Upgrading Airflow Versions

J File Edit Selection View Go Run -+ &« - L aws-mwaa-local-runner [SSH: 54.183.109.86) DB 0o0ne&

You are connected to an OS version that is unsupported by Visual Studio Code. Learn More

[‘D‘ 2-9 a’> BE’ B Q] 4 Settings % legacy-dag.py ® || BY Extension: Amazon Q @ example_dag_with _taskflow_apip; > ([0 -«

AWS-MWAA-LOCAL-RUNNER [SSH: 54.183.109.86] dags > ® legacy-dag.py

> .github 1 from airflow import DAG, settings, secrets

v dags 2 from airflow.operators.python_operator import PythonOperator, BranchPythonOperal
from airflow.operators.dummy_operator import DummyOperator
from airflow.contrib.secrets.aws_secrets_manager import SecretsManagerBackend
from airflow.contrib.operators.emr_add_steps_operator import EmrAddStepsOperatoi
from airflow.contrib.operators.emr_create_job_flow_operator import EmrCreatelobl
docker from airflow.contrib.operators.emr_terminate_job_flow_operator import EmrTermin:
plugins from airflow.contrib.sensors.emr_step_sensor import EmrStepSensor

% example_dag_with_taskflow_api.py

|@ legacy-dag.py
db-data

requirements
startup_script from airflow.contrib.hooks.aws_hook import AwsHook

from airflow.models import Variable
from airflow.utils.trigger_rule import TriggerRule
from airflow.utils.dates import days_ago

.gitignore
CODE_OF_CONDUCT.md
. CONTRIBUTING.md import os
LICENSE import sys
mwaa-local-env import boto3
output.txt import time

README.md

VERSION default_args = {

‘owner': 'airflow',
'depends_on_past': False,
‘email’: ['airflow@example.com'],
‘email_on_failure': False
‘email_on_retry':

DAG_ID = os.path.basename(__file__).replace(’'.py’,

dag = DAG(
I | | | dac id=paG Tn ==
> SSH:54.183.10986 ®0A0 W0 D AmazonQ Ln483,Col 1 Spaces:2 UTF-8 LF Python 0

nom oo m o oIl SR

AWS Services Introductions

® Amazon MWAA (Managed Workflow for Apache Airflow)
O A Managed service for Apache Airflow, making it easy for data engineers and data scientists to invoke
data processing workflows on AWS.
O Easyto set up and Maintain with High availability.

e AWS Glue

O AWSGlue is a serverless data integration service that makes data preparation simpler, faster, and
cheaper.
o Cost effective, serverless, and scalable

Demo — Workflow Creation

® Architecture
E AWS Cloud
V4

i ; o &

Amazon 53 (raw) AWS Glue Crawler AWS Glue

{ETL Job)
AWS glue data @

catalog Amazon S3 (transformed)

ol

<

Orchestration |

O
>
O

Amazon
MWAA

Q00

| L
|

Creating laaC to deploy Apache Airflowt=d/

Creating DAGs and boiler plate code

o000

@ EXPLORER: MWAA

airflow imf DAG
airflow.decorators task
airflow.models rt Variable

pendu

BUCKET = Variable.get(’
KEY = Variable.get("
= Variable.get("(

COUNTRY =

h DAG(
dag_id="top_level_code
schedule_interval=None

slum.datetime(2023, 1, 1, tz="UT(

@task()
process_covid_data():

s3 = boto3.client('s3
response = s3.get_object{(Bucket=53_BUCKET, Key=

status = response.get(“ResponseMetadat).get("HT

200:

. read_csv(response.get ("Body
df.drop(['Last_Update t!, L ! , 'Incident_Rat
df . rename (column: vince,_S : 'State y_Region': y'}, inplace=True
df = df.fillna('NA
df2 = df [df['C
df3 = df2.groupby('S hs'1].sun(). reset_index()

df3[*10KorNore'] .where((df3["Deaths"] > 10000), 1, 0
df3.sort_values(by='State")

inplace = True)

ringI0() as csv_buffer:
df3.to_csv(csv_buffer, index=False)

response = s3.put_object(
/ AWS: profile:default D Amazon Q

@ Ln34,Col66 Spaces:4 UTF-8 CRLF {4 Python 3.12.0 64-bit

Embracing Al for a Productive Future for Airflow
e Key Benefits of Al for Productivity.
® Measure Impact.
e Security.
® Review and test generated code.

® Customized Code recommendations based on Org guidelines.

Questions?

	Slide 1: Unleash the Power of AI: Streamlining Airflow DAG Development with AI-Driven Automation
	Slide 2: Agenda
	Slide 3: The Productivity Challenge
	Slide 4: Where are Data Engineers & Analysts spending time with Airflow?
	Slide 5: Opportunities with generative AI
	Slide 6: Opportunities with generative AI
	Slide 7: How AI drives Productivity gains?
	Slide 8: Generative AI Stack
	Slide 9
	Slide 10
	Slide 11: Upgrading Airflow Versions
	Slide 12: AWS Services Introductions
	Slide 13: Demo – Workflow Creation
	Slide 14: Creating IaaC to deploy Apache Airflow
	Slide 15: Creating DAGs and boiler plate code
	Slide 16: Demystifying DAGs: Building Clear Documentation
	Slide 17: Embracing AI for a Productive Future for Airflow
	Slide 18: Questions?

