
What If...?
Running Airflow Tasks without the workers

$ cat weilee.py

__name__ = 李唯 / Wei Lee
__what_i_am_doing__ = [
 Software Engineer @ Astronomer,
 Committer @ Apache Airflow,
 First Time Speaker @ Airflow Summit
]
__github__ = Lee-W
__linkedin__ = clleew
__site__ = https://wei-lee.me

$ python weilee.py

 File "weilee.py", line 1
__name__ = 李唯 / Wei Lee

 ^^^
SyntaxError: invalid syntax

QR Code links to this slide deck

Let's start with how a typical task works now
Define a DAG

��

Let's start with how a typical task works now
Define a DAG

��

Let's start with how a typical task works now
Define a DAG

��

Let's start with how a typical task works now
Define a DAG

�� This page is for traditional operators.

Let's start with how a typical task works now
Under the hood, it runs “execute”.

��

Let's start with how a typical task works now
🎉

��

Let's start with how a typical task works now

��

Since Airflow 2.2
deferrable operator was introduced

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?  Release worker slots
Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators⏳

But why?  Release worker slots
Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators⏳
This page is for deferrable operators.

Release worker slots. And…?
Reduce resource usage

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
Well… we still run “execute” first.

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
The main difference is executing “self.defer” and
raise a TaskDeferred exception through it

⏳

How does deferrable operator work?
Then, it’s the triggerer’s turn to run.

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
Execute the async “run” method in the triggerer

⏳

How does deferrable operator work?
yield a TriggerEvent when it finished

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
Execute the “execute_complete” method in another worker

⏳

How does deferrable operators work?

⏳

Do we really need to run it in the worker first?
the only logic before deferring

⏳

What can we do?

⏳

What can we do?
Start task execution in the triggerer

��

What can we do?
Start task execution in the triggerer

�� This page is for new features.

Start task execution in the worker

⏳

Start task execution in the triggerer

��

Start task execution in the triggerer
StartTriggerArgs and start_from_trigger

��

Start task execution in the triggerer
StartTriggerArgs and start_from_trigger

��

Start task execution in the triggerer
StartTriggerArgs vs self.defer

�� ⏳

Start task execution in the triggerer
StartTriggerArgs vs self.defer

��

⏳

Start task execution in the triggerer
trigger_cls

��

⏳

Start task execution in the triggerer
trigger_kwargs

��

⏳

Start task execution in the triggerer
next_method

��

⏳

Start task execution in the triggerer
args with default values

��

⏳

Start task execution in the triggerer
Under the hood

��

Start task execution in the triggerer
Under the hood (it used to be…)

⏳

Start task execution in the triggerer
Under the hood (it used to be…)

⏳

Start task execution in the triggerer
Under the hood (it used to be…)

⏳

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer

��

We donʼt even have a
next method to run
after trigger finish its
execution?

Especially when “next_methodˮ does nothing

⏳

What can we do?

⏳

Whatʼre the things we want to change?
End task execution in the triggerer

��

End task execution in the worker

⏳

End task execution in the worker

⏳

End task execution in the triggerer
Well… we need to make some change in the trigger this time

��

End task execution in the triggerer
Well… we need to make some change in the trigger

��

End task execution in the triggerer
Yield a TaskSuccessEvent

��

End task execution in the triggerer
Newly supported TriggerEvents

��

End task execution in the triggerer
Under the hook

��

End task execution in the triggerer
Under the hook

��

End task execution in the triggerer
Under the hook, it updates the state...

��

End task execution in the triggerer
based on the TriggerEvent type

End task execution in the triggerer
which used to be always set as SCHEDULED

⏳

Credit
author of the end from trigger feature

1740 at the same room

How does it affect DAG authors?

● Release more worker slot
● Improve operators and sensors for efficiency
● Reduce resource usage, which indicates cost saving
● More new use cases to come after more operator

authors apply this new feature

How does it affect operator authors?

● A new way to implement operators in an asynchronous
manner

● Simplify operators / sensors by reducing unnecessary
“executeˮ and “execute_completeˮ methods
(most applicable to sensors I think)

Potential to run all tasks in async ?

How does it affect Airflow?

Potential to run all tasks in async ?

How does it affect Airflow?

Theyʼre included in Airflow 2.10.0 🎉
You can find it if you scroll down to the end of
Airflow 2.10.0 post

Airflow 2.10.0 post: https://airflow.apache.org/blog/airflow-2.10.0/

Running Airflow Tasks without the workers
There’s no more “What if…”

Limitation Start execution from the trigger)
Limited dynamic task mapping support

Limitation Start execution from the trigger)
trigger_kwargs, start_from_trigger required in __init__

Limitation Start execution from the trigger)
the whole __init__ method skipped before execution

Limitation Start execution from the trigger)
slightly different syntax

If you donʼt know if you need to combine
this feature with dynamic task mapping

Limitation End execution from the trigger)
Doesn’t support listeners

QR Code links to my posts related to this talk

Thank you!
Any questions?

