
What If...?
Running Airflow Tasks without the workers

$ cat weilee.py

__name__ = 李唯 / Wei Lee
__what_i_am_doing__ = [
 Software Engineer @ Astronomer,
 Committer @ Apache Airflow,
 First Time Speaker @ Airflow Summit
]
__github__ = Lee-W
__linkedin__ = clleew
__site__ = https://wei-lee.me

$ python weilee.py

 File "weilee.py", line 1
__name__ = 李唯 / Wei Lee

 ^^^
SyntaxError: invalid syntax

QR Code links to this slide deck

Let's start with how a typical task works now
Define a DAG

��

Let's start with how a typical task works now
Define a DAG

��

Let's start with how a typical task works now
Define a DAG

��

Let's start with how a typical task works now
Define a DAG

�� This page is for traditional operators.

Let's start with how a typical task works now
Under the hood, it runs “execute”.

��

Let's start with how a typical task works now
🎉

��

Let's start with how a typical task works now

��

Since Airflow 2.2
deferrable operator was introduced

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why?
Non-Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators��

But why? Release worker slots
Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators⏳

But why? Release worker slots
Deferrable Operator

from: https://www.astronomer.io/docs/learn/deferrable-operators⏳
This page is for deferrable operators.

Release worker slots. And…?
Reduce resource usage

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
Well… we still run “execute” first.

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
The main difference is executing “self.defer” and
raise a TaskDeferred exception through it

⏳

How does deferrable operator work?
Then, it’s the triggerer’s turn to run.

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
Execute the async “run” method in the triggerer

⏳

How does deferrable operator work?
yield a TriggerEvent when it finished

⏳

How does deferrable operators work?

⏳

How does deferrable operator work?
Execute the “execute_complete” method in another worker

⏳

How does deferrable operators work?

⏳

Do we really need to run it in the worker first?
the only logic before deferring

⏳

What can we do?

⏳

What can we do?
Start task execution in the triggerer

��

What can we do?
Start task execution in the triggerer

�� This page is for new features.

Start task execution in the worker

⏳

Start task execution in the triggerer

��

Start task execution in the triggerer
StartTriggerArgs and start_from_trigger

��

Start task execution in the triggerer
StartTriggerArgs and start_from_trigger

��

Start task execution in the triggerer
StartTriggerArgs vs self.defer

�� ⏳

Start task execution in the triggerer
StartTriggerArgs vs self.defer

��

⏳

Start task execution in the triggerer
trigger_cls

��

⏳

Start task execution in the triggerer
trigger_kwargs

��

⏳

Start task execution in the triggerer
next_method

��

⏳

Start task execution in the triggerer
args with default values

��

⏳

Start task execution in the triggerer
Under the hood

��

Start task execution in the triggerer
Under the hood (it used to be…)

⏳

Start task execution in the triggerer
Under the hood (it used to be…)

⏳

Start task execution in the triggerer
Under the hood (it used to be…)

⏳

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer
Under the hood (it’s now…)

��

Start task execution in the triggerer

��

We donʼt even have a
next method to run
after trigger finish its
execution?

Especially when “next_methodˮ does nothing

⏳

What can we do?

⏳

Whatʼre the things we want to change?
End task execution in the triggerer

��

End task execution in the worker

⏳

End task execution in the worker

⏳

End task execution in the triggerer
Well… we need to make some change in the trigger this time

��

End task execution in the triggerer
Well… we need to make some change in the trigger

��

End task execution in the triggerer
Yield a TaskSuccessEvent

��

End task execution in the triggerer
Newly supported TriggerEvents

��

End task execution in the triggerer
Under the hook

��

End task execution in the triggerer
Under the hook

��

End task execution in the triggerer
Under the hook, it updates the state...

��

End task execution in the triggerer
based on the TriggerEvent type

End task execution in the triggerer
which used to be always set as SCHEDULED

⏳

Credit
author of the end from trigger feature

1740 at the same room

How does it affect DAG authors?

● Release more worker slot
● Improve operators and sensors for efficiency
● Reduce resource usage, which indicates cost saving
● More new use cases to come after more operator

authors apply this new feature

How does it affect operator authors?

● A new way to implement operators in an asynchronous
manner

● Simplify operators / sensors by reducing unnecessary
“executeˮ and “execute_completeˮ methods
(most applicable to sensors I think)

Potential to run all tasks in async ?

How does it affect Airflow?

Potential to run all tasks in async ?

How does it affect Airflow?

Theyʼre included in Airflow 2.10.0 🎉
You can find it if you scroll down to the end of
Airflow 2.10.0 post

Airflow 2.10.0 post: https://airflow.apache.org/blog/airflow-2.10.0/

Running Airflow Tasks without the workers
There’s no more “What if…”

Limitation Start execution from the trigger)
Limited dynamic task mapping support

Limitation Start execution from the trigger)
trigger_kwargs, start_from_trigger required in __init__

Limitation Start execution from the trigger)
the whole __init__ method skipped before execution

Limitation Start execution from the trigger)
slightly different syntax

If you donʼt know if you need to combine
this feature with dynamic task mapping

Limitation End execution from the trigger)
Doesn’t support listeners

QR Code links to my posts related to this talk

Thank you!
Any questions?

