What If...?

Running Airflow Tasks without the workers

o000
$ cat weilee.py

__name__ = =M / Wei Lee
__what_i_am_doing_ = |
Software Engineer @ Astronomer,
Committer @ Apache Airflow,
First Time Speaker @ Airflow Summit
]
__github_ = Lee-W
__linkedin_ = clleew
__site__ = https://wei-lee.me

ASTRONOMER

$ python weilee.py

File "weilee.py", line 1

__name__ = =M / Wei Lee

SyntaxError: invalid syntax

VAVAVAN

ASTRONOMER

QR Code links to this slide deck

G

Let's start with how a typical task works now

Define a DAG

1 jdrom __future__ import annotations

il

2 import pendulum

3

4 from airflow import DAG

5 from airflow.operators.bash import BashOperator
6

7 with DAG(

8 dag_id="example_dag",

9 start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
10 schedule=None,
11 catchup=False,
12

13 bash_task = BashOperator(task_id="bash_task", bash_command="echo example")

@

Let's start with how a typical task works now

Define a DAG

1 jdrom __future__ import annotations

1

2 import pendulum

3

4 from airflow import DAG

5 from airflow.operators.bash import BashOperator

6

7 B with DAG(

8 dag_id="example_dag",

9 start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
10 schedule=None,
11 catchup=False,
12 :
13 pash_task = BashOperator(task_id="bash_task", bash_command="echo example")

ASTRONOMER

@

Let's start with how a typical task works now

Define a DAG
1 jdrom __future__ import annotations
1
2 import pendulum
3
4 from airflow import DAG
5 from airflow.operators.bash import BashOperator
6
7 with DAG(
8 dag_id="example_dag",
9 start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
10 schedule=None,
11 catchup=False,
12):
s

ASTRONOMER

Let's start with how a typical task works now
Define a DAG

D 1 This page is for traditional operators.

@

Let's start with how a typical task works now

Under the hood, it runs “execute”.

20
19
18
il
16
s
14
1’8
12
aLit
10

QLN WD O OYN 0O

nN
($)]

>

class BashOperator(BaseOperator):

r,ll nn

template_fields: Sequencelstr] = ("bash_command", "env", "cwd")
template_fields_renderers = {"bash_command": "bash", "env": "json"}
template_ext: Sequencelstr] = (".sh", ".bash")

ui_color = "#f@ede4"

def __init__(

@cached_property
def subprocess_hook(self):

@staticmethod
def refresh_bash_command(ti: TaskInstance) -> None:

def get_env(self, context):

def execute(self, context: Context):

def on_kill(self) -> None:

ASTRONOMER

Let's start with how a typical task works now

O example_dag

Schedule: None Next Run ID: None | 2 O

08/22/2024(5 10:26:33 AM All Run Types v All Run States v

Auto-refresh 25 v

Press shift + / for Shortcuts

deferred removed | restarting | | running | | scheduled skipped up_for_reschedule | up_for_retry | upstream_failed| no_status

example_dag ' » 2024-08-22, 10:26:32 UTC m

A Details ™§Graph [EGantt <>Code [EventlLog

DAG Run Notes

/' Add Note
bash_task

Dag Run Details

Status @ success

Let's start with how a typical task works now

Scheduler Worker

change the TaskinstanceState to QUEUED

1 N

run "execute" method

Change the TaskinstanceState to SUCCESS

e ®

Scheduler Worker

G
Since Airflow 2.2

deferrable operator was introduced

Deferrable Tasks (AIP-40)

Deferrable tasks allows operators or sensors to defer themselves until a light-weight async check passes, at
which point they can resume executing. Most importantly, this results in the worker slot, and most notably any
resources used by it, to be returned to Airflow. This allows simple things like monitoring a job in an external

system or watching for an event to be much cheaper.

To support this feature, a new component has been added to Airflow, the triggerer, which is the daemon
process that runs the asyncio event loop.

Airflow 2.2.0 ships with 2 deferrable sensors, DateTimeSensorAsync and TimeDeltaSensorAsync, both of which
are drop-in replacements for the existing corresponding sensor.

More information can be found at:

Deferrable Operators & Triggers

G
But why?

Non-Deferrable Operator

Receive Terminal
Poll Spark Cluster for Job Status Status for Job on
Spark Cluster

Submit Job to
Spark Cluster

from: https://www.astronomer.io/docs/learn/deferrable-operators ASTRONOMER

(R
But why?

Non-Deferrable Operator

Receive Terminal
Poll Spark Cluster for Job Status Status for Job on
Spark Cluster

Submit Job to
Spark Cluster

from: https://www.astronomer.io/docs/learn/deferrable-operators ASTRONDMER

(.
But why?

Non-Deferrable Operator

Receive Terminal
Poll Spark Cluster for Job Status Status for Job on
Spark Cluster

Submit Job to
Spark Cluster

from: https://www.astronomer.io/docs/learn/deferrable-operators ASTRONOMER

(R
But why?

Non-Deferrable Operator

Receive Terminal
Poll Spark Cluster for Job Status Status for Job on
Spark Cluster

Submit Job to
Spark Cluster

from: https://www.astronomer.io/docs/learn/deferrable-operators ASTRONOMER

@
- But why? - Release worker slots

Deferrable Operator

Poll Spark Cluster for Job Status

x from: https://www.astronomer.io/docs/learn/deferrable-operators ASTRONDMER

- But why? > Release worker slots

Deferrable Operator

Receive Terminal
Poll Spark Cluster for Job Status Status for Job on
Spark Cluster

Submit Job to
Spark Cluster

This page is for deferrable operators.
m /

from: https://www.astronomer.io/docs/learn/deferrable-operators ASTRONDMER

@
Release worker slots. And...?

Reduce resource usage

P, .cIIIIIIIIEA_'.J.l

7

?IIST SAVINGS?

B

G

How does deferrable operators work?

Scheduler Triggerer Worker 2

change the TasklInstanceState to QUEUED

>
|

run "execute” method

raise "TaskDeferred" exception and change TaskInstanceState to DEFERRED

>
»>

run "run” method and yield “TriggerEvent"

Change the TasklnstanceState to SCHEDULED

S S G . o

Change the TaskinstanceState to QUEUED
(6 >

run "next_method"

Change the TasklnstanceState to SUCCESS

0

Scheduler Worker Triggerer Worker 2

@
How does deferrable operator work?

Well... we still run “execute” first.

s3.py X

—tlp def execute(self, context: Context) -> None:

"""Airflow runs this method on the worker and defers using the trigger
if not self.deferrable:
super().execute(context)
else:
if not self.poke(context):
self.defer(
timeout=timedelta(seconds=self.timeout),
trigger=S3KeysUnchangedTrigger(
bucket_name=self.bucket_name,
prefix=self.prefix,

w
©

P WML OORFRMNMWDO
=

ASTRONOMER

b

(&

How does deferrable operators work?

Scheduler Worker

change the TaskInstanceState to QUEUED

&b B

run "execute" method

raise "TaskDeferred" exceptia

[C8
How does deferrable operator work?

The main difference is executing “self.defer” and
raise a TaskDeferred exception through it

» s3.py X

context

if not self.poke(context):
self.defer(

timeout=timedelta(seconds=self.timeout),

trigger=S3KeysUnchangedTrigger(
bucket_name=self.bucket_name,
prefix=self.prefix,
inactivity_period=self.inactivity_period,
min_objects=self.min_objects,
previous_objects=self.previous_objects,

inactivity_seconds=self.inactivity_seconds, Al N L ER

m\lo\(.ﬂ-bwwl—‘fl—‘
[
|

[

B

@
How does deferrable operator work?

Then, it's the triggerer’s turn to run.

s3.py X

context

if not self.poke(context):
self.defer(
timeout=timedelta(seconds=self.timeout),

— trigger=S3KeysUnchangedTrigger(
bucket_name=self.bucket_name,
prefix=self.prefix,
inactivity_period=self.inactivity_period,
min_objects=self.min_objects,
previous_objects=self.previous_objects,
inactivity_seconds=self.inactivity_seconds,

ASTRONOMER

ONOO PP WP OB

pd

G

How does deferrable operators work?

Worker Triggerer

te to QUEUED

>

run "execute" method

raise "TaskDeferred" exception and change TaskinstanceState to DEFERRED

>

run “run” method and yield "TriggerEven

o
How does deferrable operator work?

Execute the async “run” method in the triggerer

=P async def run(self) -> AsyncIterator[TriggerEvent]:

B

G -
How does deferrable operator work?
yield a TriggerEvent when it finished

P4
b
v

yield TriggerEvent(result)

(&

How does deferrable operators work?

Scheduler Triggerer

change the TaskinstanceState to QUEUED

B
|

run "execute" method

raise "TaskDeferred" exception and change TaskinstanceState to DEFERRED

B
>

run "run” method and yield "TriggerEvent”

Change the TaskInstanceState to SCHEDULED

e o

G

i

H
S

B

NFEMNWD OO 0O

How does deferrable operator work?

Execute the “execute _complete” method in another worker

def execute_complete(self, context: Context, event: dict[str, Any]l | None = None) -> None:

Execute when the trigger fires - returns immediately.

Relies on trigger to throw an exception, otherwise it assumes execution was successful.

event = validate_execute_complete_event(event)
if event and event["status"] == "error":

| raise AirflowException(event["message"])
return NonE

ASTRONOMER

G

How does deferrable operators work?

Scheduler Triggerer Worker 2

change the TasklInstanceState to QUEUED

»
>

run "execute” method

raise "TaskDeferred" exception and change TaskInstanceState to DEFERRED

>
>

run "run” method and yield "TriggerEvent"

Change the TaskInstanceState to SCHEDULED °
T —— S s———_——

Change the TaskinstanceState to QUEUED

6 >

run "next_method"

Change the TaskinstanceState to SUCCESS

0

Scheduler Worker Triggerer Worker 2

Do we really need to run it in the worker first?

the only logic before deferring

149 class S3KeysUnchangedSensor(BaseSensorOperator):

B

5 def execute(self, context: Context) -> None:
3 l if not self.deferrable:
2 | super().execute(context)
1 Eaaetl's o
351 - if not self.poke(context):
1 : self.defer(

ASTRONODMER

e Y-

Fare, N .
I DON'T THINK SO, SIR.

ASTRONOMER

G

What can we do?

Scheduler Worker Triggerer

change the TaskinstanceState to QUEUED

B
!

run "execute" method

raise "TaskDeferred" exception and change TaskinstanceState to DEFERRED

B
L

run "run” method and yield "TriggerEvent”

Change the TaskInstanceState to SCHEDULED

e o

What can we do?

Start task execution in the triggerer

Scheduler Triggerer Worker 2

raise "TaskDeferred" and change TaskinstanceState to DEFERRED

1 .

run "run” method and yield "TriggerEvent"

Change the TaskInstanceState to SCHEDULED

o ®

" What can we do?

Start task execution in the triggerer

Scheduler Triggerer Worker 2

raise "TaskDeferred" and change TaskinstanceState to DEFERRED

& >

run "run” method and yield "TriggerEvent"

Change the TasklnstanceState to SCHEDULED

o @

. <¢—— This page is for new features. ASTRONOMER

G

b

Start task execution in the worker

ONOOI D WN PP

Erom datetime import timedelta
from typing import Any

from airflow.sensors.base import BaseSensorOperator
from airflow.triggers.temporal import TimeDeltaTrigger
from airflow.utils.context import Context

class WaitOneHourSensor(BaseSensorOperator):
def execute(self, context: Context) -> None:
self.defer(
trigger=TimeDeltaTrigger(timedelta(hours=1)), method_name="execute_complete"

)

def execute_complete(

self, context: Context, event: dict[str, Any]l | None = None
) -> None:

We have no more work to do here. Mark as complete.

return

ASTRONOMER

G

Start task execution in the triggerer

18
17
16
15
14
113
il
11
10

(o]

NP WNPFPOPFPNMWDDOIONN

class WaitHoursSensor(BaseSensorOperator):

start_trigger_args = StartTriggerArgs(
trigger_cls="airflow.triggers.temporal.TimeDeltaTrigger",
trigger_kwargs={"delta": timedelta(hours=1)},
next_method="execute_complete",
next_kwargs=None,
timeout=None,

def __init__(
self,
xargs: list[Any],
trigger_kwargs: dict[str, Anyl | None,
start_from_trigger: bool,
*xkwargs: dict[str, Anyl,
) -> None:
super().__init__(*args, *xkwargs)
self.start_trigger_args.trigger_kwargs = trigger_kwargs

] self.start_from_trigger = start_from_trigger

def execute_complete(

self, context: Context, event: dict[str, Anyl | None = None
) -> None:

We have no more work to do here. Mark as complete.

return

ASTRONOMER

@ .
Start task execution in the triggerer
StartTriggerArgs and start_from_trigger

P sclf.start_from_trigger = start_from_trigger

(o
Start task execution in the triggerer
StartTriggerArgs and start_from_trigger

start_trigger_args = StartTriggerArgs(
trigger_cls="airflow.triggers.temporal.TimeDeltaTrigger",
trigger_kwargs={"delta": timedelta(hours=1)},
next_method="execute_complete",
next_kwargs=None,
timeout=None,

ASTRONOMER

G

18

[l el < S PO S T =Y
OO R MNMWD G O N

DO PP WONPEPOPRPNMWD OO N

Start task execution in the triggerer

StartTriggerArgs vs self.defer

class WaitHoursSensor(BaseSensorOperator):

sta

def

def

) -> None:

rt_trigger_args = StartTriggerArgs(
trigger_cls="airflow.triggers.temporal.TimeDeltaTrigger",
trigger_kwargs={"delta": timedelta(hours=1)},
next_method="execute_complete",

next_kwargs=None,

timeout=None,

__init__(

self,

xargs: list[Any],

trigger_kwargs: dict[str, Anyl | None,
start_from_trigger: bool,

*xkwargs: dict[str, Anyl,

super().__init__(*args, **kwargs)
self.start_trigger_args.trigger_kwargs = trigger_kwargs
self.start_from_trigger = start_from_trigger

ONODOU DD WNPEFPORFPMNMWDO OO

[
S O

execute_complete(
self, context: Context, event: dict[str, Anyl | None = None

e
N

) -> None:

We have no more work to do here. Mark as complete.
return

from
from

from
from
from

clas

2

datetime import timedelta
typing import Any

airflow.sensors.base import BaseSensorOperator
airflow.triggers.temporal import TimeDeltaTrigger
airflow.utils.context import Context

s WaitOneHourSensor(BaseSensorOperator):
def execute(self, context: Context) -> None:
self.defer(
trigger=TimeDeltaTrigger(timedelta(hours=1)),
method_name="execute_complete"

)

def execute_complete(

self, context: Context, event: dict[str, Any]l | None = None
) -> None:

We have no more work to do here. Mark as complete.

return

ASTRONOMER

a
Start task execution in the triggerer
StartTriggerArgs vs self.defer

start_trigger_args = StartTriggerArgs(
trigger_cls="airflow.triggers.temporal.TimeDeltaTrigger",
trigger_kwargs={"delta": timedelta(hours=1)},
next_method="execute_complete",
next_kwargs=None,
timeout=None,

def execute(self, context: Context) -> None:
self.defer(
trigger=TimeDeltaTrigger(timedelta(hours=1)),
method_name="execute_complete"

(29

ASTRONOMER

G
Start task execution in the triggerer

trigger cls

trigger_cls="airflow.triggers.temporal.TimeDeltaTrigger",

B

trigger=TimeDeltaTrigger

G -
Start task execution in the triggerer

trigger_kwargs

trigger_kwargs={"delta": timedelta(hours=1)},

B

‘timedelta(hours=1)

G -
Start task execution in the triggerer

next _method

next_method="execute_complete",

B

method_name="execute_complete"

G
Start task execution in the triggerer

args with default values

next_kwargs=None,
timeout=None,

B

(o

Start task execution in the triggerer
Under the hood

PRRPRPREPPRPERPPEPWWW
OORPMNMWDUON®OON ©

158

ONOU P, WNPFPOORFRPMNWSDO O

def schedule_tis(
self,
schedulable_tis: Iterable[TI],
for ti in schedulable_tis:

if TYPE_CHECKING:
assert ti.task

R
ti.task.inherits_from_empty_operator
and not ti.task.on_execute_callback
and not ti.task.on_success_callback
and not ti.task.outlets

dummy_ti_ids.append((ti.task_id, ti.map_index))

check "start_trigger_args" to see whether the operator supports start execution from triggerer
if so, we'll then check "start_from_trigger" to see whether this feature is turned on and defer
this task.
if not, we'll add this "ti" into "schedulable_ti_ids" and later execute it to run in the worker
elif ti.task.start_trigger_args is not None:

context = ti.get_template_context()

start_from_trigger = ti.task.expand_start_from_trigger(context=context, session=session)

H O R

iffstart_from_trigger:
ti.start_date = timezone.utcnow()
if ti.state != TaskInstanceState.UP_FOR_RESCHEDULE:
ti.try_number += 1
ti.defer_task(exception=None, session=session)
else:
schedulable_ti_ids.append((ti.task_id, ti.map_index))
else:
schedulable_ti_ids.append((ti.task_id, ti.map_index))

ASTRONOMER

G

Start task execution in the triggerer
Under the hood (it used to be...)

Schedule a task

___—Yyes—®» mark as success

start — Inherit from empty operator
\

P schedulable task

G

Start task execution in the triggerer
Under the hood (it used to be...)

Schedule a task

yes mark as success

Inherit from empty operator

no— schedulable task

@

Start task execution in the triggerer
Under the hood (it used to be...)

Schedule a task

yes—¥ mark as success

no schedulable task

Inherit from empty operator

B

G

Start task execution in the triggerer

Under the hood (it's now...)

Schedule a task (after start_from_trigger was introduced)

__yes—» mark as success defer the task
inherit from __yes—> for the triggerer

e

empty operator to pick up

start_from_trigger
no——»
is True
add it to

schedulable tasks

Start task execution in the triggerer

Under the hood (it's now...)

Schedule a task (after start_from_trigger was introg

yes—b mark as success
inherit from

em operator
pty ope start_from_trigger

is True

@

Start task execution in the triggerer

Under the hood (it's now...)

start_from_trigger was introduced)

defer the task
for the triggerer

to pick u
start_from_trigger 2 p

is True
add it to
schedulable tasks

no———»

@

Start task execution in the triggerer
Under the hood (it's now...)

Schedule a task

yes—¥ defer the task for the triggerer to pick up

start_from_trigger is True

add to it schedulable task

Start task execution in the triggerer

Scheduler

(_____

Scheduler

Triggerer

raise "TaskDeferred" and change TaskinstanceState to DEFERRED

run "run” method and yield "TriggerEvent”

Change the TasklnstanceState to SCHEDULED

___ e

Change the TaskInstanceState to QUEUED

Change the TaskInstanceState to SUCCESS

Triggerer

Worker 2

run "next_method"

Worker 2

We don’t even have a
hext method to run
after trigger finish its
execution?

G

Especially when “next_method"” does nothing

1 from datetime import timedelta
from typing import Any
om airflow.sensors.base import BaseSensorOperator
om airflow.triggers.temporal import TimeDeltaTrigger
n airflow.utils.context import Context

WaltOneHourSensor BaseSensorOperator

t: Context) -> None:
14 def execute_complete(
15 self, context: Context, event: dict[str, Any] | None = None
16) -> None:
—1-h> # We have no more work to do here. Mark as complete.
return

ASTRONOMER

G

What can we do?

Scheduler Triggerer

Change the TaskInstanceState to SCHEDULED °
e L P e

Change the TaskInstanceState to QUEUED

run "next_method"

@
What're the things we want to change?

End task execution in the triggerer

Scheduler Triggerer

raise "TaskDeferred" and change TaskinstanceState to DEFERRED

1 Y

run “run” and yield "TriggerEvent"

Change the TaskinstanceState to SUCCESS

e @

Scheduler Triggerer

G

Bl

ONODO D> WN P

End task execution in the worker

[{rom datetime import timedelta
from typing import Any

from airflow.sensors.base import BaseSensorOperator
from airflow.triggers.temporal import TimeDeltaTrigger
from airflow.utils.context import Context

class WaitOneHourSensor(BaseSensorOperator):
def execute(self, context: Context) -> None:
self.defer(
trigger=TimeDeltaTrigger(timedelta(hours=1)), method_name="execute_complete"

)

def execute_complete(

self, context: Context, event: dict[str, Any] | None = None
) -> None:

We have no more work to do here. Mark as complete.

return

ASTRONOMER

G

Bl

ONODO D> WN P

End task execution in the worker

[{rom datetime import timedelta
from typing import Any

from airflow.sensors.base import BaseSensorOperator
from airflow.triggers.temporal import TimeDeltaTrigger
from airflow.utils.context import Context

class WaitOneHourSensor(BaseSensorOperator):
def execute(self, context: Context) -> None:
self.defer(

triggerfgTimeDeltaTriggerfftimedelta(hours=1)), method_name="execute_complete"

def execute_complete(

self, context: Context, event: dict[str, Any] | None = None
) -> None:

We have no more work to do here. Mark as complete.

Fetuern

)

ASTRONOMER

- End task execution in the triggerer
Well... we need to make some change in the trigger this time

@ temporal.py [

ss TimeDeltaTrigger(DateTimeTrigger): -

9 f __init__(

8)

7 delta: datetime.timedelta,

6 *,

3 end_from_trigger: bool = False

4) -> None:

3 ().__init__(

2 moment=timezone.utcnow() + delta,

1 end_from_trigger=end_from_trigger
113 | ||)

ASTRONJDMER

End task execution in the triggerer

Well... we need to make some change in the trigger

@ temporal.py [
class DateTimeTrigger(BaseTrigger):

async def run() -> AsyncIterator[TriggerEvent]:
for step in 3600, 60, 10:
16 seconds_remaining = (
15 .moment - pendulum.instance(timezone.utcnow())
14) .total_seconds()

while seconds_remaining > 2 * step:
.log.info("%d seconds remaining; sleeping %s seconds", seconds_remaining, step)
await asyncio.sleep(step)

10 seconds_remaining = (
9 .moment - pendulum.instance(timezone.utcnow())
8) .total_seconds()
while .moment > pendulum.instance(timezone.utcnow()):
.log.info("sleeping 1 second...")

await asyncio.sleep(1)
if self.end_from_trigger:

> self.log.info("Sensor time condition reached; marking task successful and exiting")
yield TaskSuccessEvent()
88 elsef]

self.log.info("yielding event with payload %r", self.moment)
yield TriggerEvent(self.moment)

ASTRONOMER

(s

End task execution in the triggerer

Yield a TaskSuccessEvent

if
. .info("Sen 1e COoNc
yield TaskSuccessEvent() D
elseﬂ

info(eldin e ' yay L /Y G .)
rEvent (:)

G

End task execution in the triggerer
Newly supported TriggerEvents

0O NOOl WP

class TaskSuccessEvent(BaseTaskEndEvent):
"""yield this event in order to end the

task_instance_state = TaskInstanceState
class TaskFailedEvent(BaseTaskEndEvent):

"""yield this event in order to end the

task_instance_state = TaskInstanceState

class TaskSkippedEvent(BaseTaskEndEvent):
"""yield this event in order to end the

task_instance_state = TaskInstanceState.

task successfully.

-SUCCESS

task with failure.

-FATLED

task with status 'skipped'.

SKIPPED

AS 1 RONOMER

[
End task execution in the triggerer
Under the hook

163 class TriggererJobRunner(BaseJobRunner, LoggingMixin):

@add_span

def handle_events(self):
"""Dispatch outbound events to the Trigger model which pushes
while self.trigger_runner.events:
Get the event and its trigger ID
trigger_id, event = self.trigger_runner.events.popleft()
Tell the model to wake up its tasks
irigger.submit_event(trigger_id=trigger_id, event=event)
Emit stat event
Stats.incr("triggers.succeeded")

r N F‘Ek P NN WS OOy N

ASTRONOMER

(o
End task execution in the triggerer
Under the hook

» triggerer_job_runner.py - [

164 class Trigger(Base):
10 @classmethod
@internal_api_call
@provide_session
def submit_event(cls, trigger_id, event, session: Session = NEW_SESSION) -> None:

"""Take an event from an instance of itself, and trigger all dependent tasks to resume.

for task_instance in session.scalars(

select(TaskInstance).where(
TaskInstance.trigger_id == trigger_id, TaskInstance.state == TaskInstanceState.DEFERRED

O

P NN W OO

)
):

Wm_* event.handle_submit(task_instance=task_instance)

ASTRONOMER

G

End task execution in the triggerer
Under the hook, it updates the state...

@ triggerer_job_runner.py x @ trigger.py | @ base.py = x

33 class BaseTaskEndEvent(TriggerEvent):

[T S
(ST N

Nl—‘il—‘l\)wbmo\\lm@

@provide_session
def handle_submit(self, *, task_instance: TaskInstance, session: Session = NEW_SESSION) -> None:

Submit event for the given task instance.
Marks the task with the state “task_instance_state’ and optionally pushes xcom if applicable.

:param task_instance: The task instance to be submitted.

:param session: The session to be used for the database callback sink.

nnn

Mark the task with terminal state and prevent it from resuming on worker
task_instance.trigger_id = None

task_instance.state = self.task_instance_state
self._submit_callback_if_necessary(task_instance=task_instance, session=session)
self._push_xcoms_if_necessary(task_instance=task_instance)

ASTRONOMER

G

End task execution in the triggerer
based on the TriggerEvent type

0O NOOl WP

class TaskSuccessEvent(BaseTaskEndEvent):
"""yield this event in order to end the

task_instance_state = TaskInstanceState
class TaskFailedEvent(BaseTaskEndEvent):

"""yield this event in order to end the

task_instance_state = TaskInstanceState

class TaskSkippedEvent(BaseTaskEndEvent):
"""yield this event in order to end the

task_instance_state = TaskInstanceState.

task successfully.

-SUCCESS

task with failure.

-FATLED

task with status 'skipped'.

SKIPPED

AS 1 RONOMER

@

End task execution in the triggerer
which used to be always set as SCHEDULED

() 9 mmmm airflow/models/trigger.py d;

@@ -203,14 +203,7 @@ def submit_event(cls, trigger_id, event, session: Session = NEW_SESSION) —> None
TaskInstance.trigger_id == trigger_id, TaskInstance.state == TaskInstanceState.DEFERRED

Add the event's payload into the kwargs for the task
next_kwargs = task_instance.next_kwargs or {}
next_kwargs["event"] = event.payload
task_instance.next_kwargs = next_kwargs

Remove ourselves as its trigger
task_instance.trigger_id = None

Finally, mark it as scheduled so it gets re-queued
task_instance.state = TaskInstanceState.SCHEDULED
event.handle_submit(task_instance=task_instance)

Credit

author of the end from trigger feature

Ankit Chaurasia

Senior Software Engineer at Astronomer

Ankit Chaurasia is a Senior Software Engineer at Astronomer, where he focuses on the design and
engineering of Apache Airflow. He is an advocate for open-source projects and has contributed to
initiatives such as Apache Airflow, Ask-Astro, and OpenCV CVAT. Previously, Ankit led teams at
Wadhwani Al, developing Al solutions for healthcare and agriculture, which resulted in winning a $2
million Google Al Challenge grant.

More at https://ankitchaurasia.infc
Sessions by Ankit Chaurasia

. (2024)

17:40 at the same room

Mastering Advanced Dataset Scheduling
in Apache Airflow

Speaker(s): Sep-11 17:40-18:05 in Elizabethan A+B rfl Add to Calendar

Are you looking to harness the full potential of data-driven pipelines with Apache Airflow? This session will dive into
the newly introduced conditional expressions for advanced dataset scheduling in Airflow - a feature highly requested
by the Airflow community. Attendees will learn how to effectively use logical operators to create complex
dependencies that trigger DAGs based on the dataset updates in real-world scenarios. We'll also explore the
innovative DatasetOrTimeSchedule, which combines time-based and dataset-triggered scheduling for unparalleled
flexibility. Furthermore, attendees will discover the latest APl endpoints that facilitate external updates and resets of
dataset events, streamlining workflow management across different deployments.

This talk also aims to explain:
The basics of using conditional expressions for dataset scheduling.
How do we integrate time-based schedules with dataset triggers?
Practical applications of the new APl endpoints for enhanced dataset management.

Real-world examples of how these features can optimize your data workflows.

(o

How does it affect DAG authors?

Release more worker slot

Improve operators and sensors for efficiency
Reduce resource usage, which indicates cost saving
More new use cases to come after more operator
authors apply this new feature

ASTRONDMER

How does it affect operator authors?

e A new way to implement operators in an asynchronous
manner

e Simplify operators / sensors by reducing unnecessary
“execute” and “"execute_complete” methods
(most applicable to sensors | think)

il
How does it affect Airflow?

Potential to run all tasks in async

il
How does it affect Airflow?

Potential to run all tasks in async ?

q .
They're included in Airflow 2.10.0 &=

You can find it if you scroll down to the end of
Airflow 2.10.0 post

Additional new features

Here are just a few interesting new features since there are too many to list in full:

o Deferrable operators can now execute directly from the triggerer without needing to go
through the worker. This is especially efficient for certain operators, like sensors, and can
help teams save both time and money.

G

Running Airflow Tasks without the workers

There’s no more “What if...”

Scheduler Triggerer

raise "TaskDeferred" and change TaskinstanceState to DEFERRED

>

run “run” and yield "TriggerEvent”

Change the TaskinstanceState to SUCCESS

- ®

Scheduler Triggerer

THE CIRCLE IS NOW COMPL

|
i

EWE.

S——

¥ AND THEVALLLIVED

JRHARRILY,EVER AFTE

ASTRONODMER

Limitation (Start execution from the trigger)

Limited dynamic task mapping support

17 class WaitHoursSensor(BaseSensorOperator):

16 # You'll need to change trigger_cls to the actual path to HourDeltaTrigger.
10 timeout=None,

9)

8

7 I ERI i i LI

6 self,

5 *args: list[Any],

4 trigger_kwargs: dict[str, Anyl | None,

3 start_from_trigger: bool,

2 *xkwargs: dict[str, Anyl,

1) -> None:
26 # Thif] whole method will be skipped during dynamic task mapping.
1

p super().__init__(*args, **xkwargs)

3 self.start_trigger_args.trigger_kwargs = trigger_kwargs

4 self.start_from_trigger = start_from_trigger

ASTRONOMER

Limitation (Start execution from the trigger)

trigger_kwargs, start_from_trigger required in __init__

17 class WaitHoursSensor(BaseSensorOperator):

16 # You'll need to change trigger_cls to the actual path to HourDeltaTrigger.
10 timeout=None,

9)

8

7 def @ iin it (

6 self,

5 karag . i An

!

3 start_from_trigger: bool,

2 RWArgs: o AT/

1) -> None:
26 # Thif] whole method will be skipped during dynamic task mapping.
1

p super().__init__(*args, **xkwargs)

3 self.start_trigger_args.trigger_kwargs = trigger_kwargs

4 self.start_from_trigger = start_from_trigger

ASTRONOMER

Limitation (Start execution from the trigger)

the whole __init__ method skipped before execution

17 class WaitHoursSensor(BaseSensorOperator):

16 # You'll need to change trigger_cls to the actual path to HourDeltaTrigger.
10 timeout=None,

9)

Limitation (Start execution from the trigger)
slightly different syntax

WaitHoursSensor.partial(
task_id="wait_for_n_hours",
» start_from_trigger=True

) .expand(

» trigger_kwargs=[
1+ "hours": -1},
1'hours” 25

]

ASTRONOMER

If you don’t know if you nheed to combine
this feature with dynamic task mapping

G

Limitation (End execution from the trigger)

Doesn’t support listeners

Exiting from the trigger works only when listeners are not integrated for the deferrable operator. Currently, when deferrable
operator has the end_from_trigger attribute setto True and listeners are integrated it raises an exception during parsing

to indicate this limitation. While writing the custom trigger, ensure that the trigger is not set to end the task instance directly
if the listeners are added from plugins. If the end_from_trigger attribute is changed to different attribute by author of
trigger, the DAG parsing would not raise any exception and the listeners dependent on this task would not work. This

limitation will be addressed in future releases.

@

QR Code links to my posts related to this talk

Thank youl!
Any questions?

