
Profiling Airflow tasks
with Memray
Cedrik Neumann

About me

● Mathematics and computer science in Berlin

● Data Engineer since 2013

● Working with Airflow since 2015

● First commit to Airflow in 2019

● Helped migrating King’s data orchestration from Jenkins to Airflow
on Astro Cloud from 2018 to 2024

2

The problem

● Intermittent task failures + high memory usage

● Unstable/slow DAG parsing performance

● Not an expert on profiling Python code

3

Meet Memray
“The endgame Python memory profiler

Memray tracks and reports memory allocations, both in Python code and in compiled
extension modules.”

 – Memray

https://bloomberg.github.io/memray/

4

https://bloomberg.github.io/memray/

Hackday time! 🤓

How? 🤔

Leverage existing Airflow functionality

1. Cluster Policies: Monkey patch existing tasks

2. Object Storage: File interface for remote storage backends from
providers

3. Operator Extra Links: Link to make reports directly available from
the UI

4. Flask Blueprints: Serve reports via Airflow’s web server

7

Examples

Monkey patch task

● A task policy is responsible for
monkey patching selected tasks

● The task’s execute method is
wrapped in a function, which
takes care of executing the task
in the context of Memray’s
tracker, generating reports and
copying files to object storage

● Cluster policies are available
since Airflow 2.6

9

@hookimpl
def task_policy(task: BaseOperator) -> None:
 if not is_run_memray(task):
 return

 task.execute = memray_func(task.execute)

def memray_func(f: C) -> C:

 @functools.wraps(f)
 def memray_execute(*args, **kwargs) -> Any:
 # pre task
 try:
 with memray.Tracker(destination):
 return f(*args, **kwargs)
 finally:
 # post task

 return memray_execute

Upload results to
object storage

● A local temporary directory is
used for the profile and
generated reports

● The object storage interface
allows us to be agnostic about
the destination object storage
when copying all results

● Object storage is available
since Airflow 2.8 and currently
experimental ⚠

10

pre task
tmp = TemporaryDirectory("memray")
folder = Path(tmp.name)
destination = memray.FileDestination(
 folder / "profile.bin",
)

execute task ...

post task
make_reports(folder)

can be a remote instance of object storage
dst_folder = get_object_storage_path(context["ti"].key)

copy all local results to dst folder
for file in ObjectStoragePath(folder).iterdir():
 file.copy(dst_folder / file.name)

Link to results with
operator extra link

● We check existence of report
via object storage API and
return the corresponding URL if
it exists

● We can define extra links for all
operators with
global_operator_extra_links

● Global operator extra links are
available since Airflow 1.10.4

11

class MemrayStatsLink(BaseOperatorLink):
 name = "Memray Stats"

 def get_link(self, operator: BaseOperator,
 *, ti_key: TaskInstanceKey) -> str:

 folder = get_object_storage_path(ti_key)
 file = folder / "stats.json"

 if not file.exists():
 return ""

 return get_url(file, ti_key)

class MemrayPlugin(AirflowPlugin):
 name = "memray_plugin"

 global_operator_extra_links = [
 MemrayStatsLink(),
]

Serve results via
Flask blueprints

● Airflow’s plugin mechanism
allows to add endpoints for our
reports to the web server with
Flask blueprints

● The object storage API lets us
create an open file handle,
which can be served directly

● Flask blueprints are going to
disappear in Airflow 3 (AIP-79)
⚠

12

blueprint = Blueprint(
 name="memray",
 import_name=__name__,
 url_prefix="/memray",
)

@blueprint.get("/stats.json")
def stats():
 folder = get_object_storage_path(ti_key)
 file = folder / "stats.json"

 f = file.open("rb")
 return send_file(f, mimetype="application/json")

class MemrayPlugin(AirflowPlugin):
 name = "memray_plugin"

 flask_blueprints = [blueprint]

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-79%3A+Remove+Flask+AppBuilder+as+Core+dependency

Demo time 👀

All good? 🧐

Problems & limitations

● Control which tasks to profile (configuration/code vs. on-demand)

● Expose metrics/results in Airflow UI (maybe AIP-68*?)

● Show extra links only for relevant tasks

● Doesn’t work with bash/k8s operator (new processes)

● Doesn’t work with deferrable tasks (triggers)

15

*AIP-68 Extended Plugin Interface for React Views

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-68+Extended+Plugin+Interface+for+React+Views

Ideas / Nice to have

● Profile DAGs inside the DAG processor

● Profile deferrable tasks (triggers)

● Perform other ways of profiling (i.e. CPU)

● Airflow interface to run task in custom context

● Task flow decorator

● Profile entire Airflow processes

16

Are we supposed to run this in production
permanently?

● No, probably not

● Profiling can affect performance significantly

● This project acts as a POC on how to profile Airflow tasks remotely

● In production you likely want to profile tasks more selectively

● … or implement dedicated test DAGs to track memory usage over
time

17

Thank you!
Mexico City, Mexico

github.com/m1racoli

linkedin.com/in/cedrikneumann

github.com/m1racoli/airflow-memray

http://github.com/m1racoli
http://linkedin.com/in/cedrikneumann
http://github.com/m1racoli/airflow-memray

