
Airflow and multi-
cluster Slurm working 
together
Eloi Codina-Torras



About me

● Born near Barcelona
● Studied: Industrial Engineering

● Currently: Product Owner @ Meteosim
● Extra: pursuing a PhD in renewable energy

● 2nd Airflow Summit!

2/11

Eloi Codina-Torras



About Meteosim

We offer meteorological and air quality services to many sectors:

We’re experts in helping our customers

● Evaluate and minimize the environmental impact of their operations

● React to pollution complaints

● Fulfill public administration requisites

3/11

Chemical Mining Waste & 
Water Energy Oil & Gas



Our use-case

We run computationally expensive meteorological and air quality simulations / 
pipelines:

● Data acquisition
● Pre-processing
● Simulation
● Post-processing

We use:

● A bare-metal machine on-prem
● Virtual machines on the cloud

All the machines are managed with Slurm

4/11



Meteosim before Airflow

Hundreds of pipelines were introduced in the crontab file

Headaches:

● Bad monitoring. Difficult to know which jobs failed

● Difficult to find the log file for each job

● Difficult to relaunch jobs at the step they failed (a task in a DAG)

● No common practices when writing the pipelines

● Difficult to find the pipeline in the crontab file

● Pipelines running even after they weren’t needed

All this changed in 2021, when we introduced Airflow

5/11



Creating the Slurm 
integration 

6



Overview 

Computing

HPC on-prem

Cloud

Communication layer

Redis

Airflow
In 2 VM

By using deferrable 
operators we have HA

7/11



Example of a message

The message contains information 
about:

● Which cluster to run the job
● The script 
● Resource configuration
● Environment variables the job 

needs

Daemon #1 adds:

● Information about submission

Daemon #2 adds:

● Information about job state

{

"cluster": "onprem",

"command": "/path/to/script",

"slurm_options": {

"NODES": 1,

"NTASKS": 1

},

"env": {

"SBATCH_PARTITION": "high",

"SBATCH_TIMELIMIT": "00:30:00",

"SBATCH_MEM_PER_NODE": "20G"

},

"result": {

"exit_code": 0,

"job_id": 123456,

"message": "reason_why_submit_failed"

},

"sacct_result": {

"state": "COMPLETED",

"reason": "reason_why_current_state"

}

}

8/11



How do we submit a job?

SlurmOperator Daemon #1

Adds a message in Redis

Adds the message ID in a 
Redis list for a cluster

Defers itself
Sends the message ID to the trigger

Gets the message

Submits the job in Slurm

Updates the Redis message 
with the Slurm job ID

9/11



How do we monitor jobs?

Daemon #2

Every 5 seconds

SlurmTrigger

Every 5 - 60 seconds

Gets all the running jobs in 
the cluster

Updates all the Redis 
messages with their state

Gets the message for that task

Checks if the job has finished

yields

yes

Reads the Slurm job’s log

no

10/11



Manage DAGs

11



12



13



Conclusion

14



A success story

We can now:

● Let Slurm manage resource and Airflow dependencies and schedules

● Run jobs in multiple clusters with a single source of truth

● Read logs from all the jobs in one single platform

● Restart any component of the integration: it has high availability!

Moreover:

● Creating DAGs is as easy as configuring a form on a webpage

● Every DAG is stored as a YAML file

6000 runs / day 0% failure
due to the integration

15/11



Questions?
Eloi Codina-Torras

eloi-codina


	Slide 1: Airflow and multi-cluster Slurm working together
	Slide 2: About me
	Slide 3: About Meteosim
	Slide 4: Our use-case
	Slide 5: Meteosim before Airflow
	Slide 6: Creating the Slurm integration 
	Slide 7: Overview 
	Slide 8: Example of a message
	Slide 9: How do we submit a job?
	Slide 10: How do we monitor jobs?
	Slide 11: Manage DAGs
	Slide 12
	Slide 13
	Slide 14: Conclusion
	Slide 15: A success story
	Slide 16: Questions?

